Advances in Computer Vision and Pattern Recognition

A \"J
C

&
Robotic
@ ®
Vision
From Deep Learning to Autonomous
Systems

N Springer

Advances in Computer Vision
and Pattern Recognition

Series Editor
Srinivasa Narasimhan

Carnegie Mellon University, Pittsburgh, PA, USA

Advisory Editors
Richard Bowden

University of Surrey, Guildford, UK

Sven Dickinson
University of Toronto, Toronto, ON, Canada

Jiaya Jia
The Chinese University of Hong Kong, Shatin, Hong Kong

Zhouchen Lin
Peking University, Beijing, China

Bernt Schiele

Max Planck Institute for Informatics, Saarbricken,
Germany

Founding Editor
Sameer Singh

The field of computer vision and pattern recognition has a
rich history of nearly 50 years. In the past decade,
however, the field has experienced remarkable advances in
scene understanding and image generation. This
advancement is driven by three key factors: (a) the
availability of large, diverse datasets, (b) the accessibility
of cloud and personal computing, and (c) the open release
of advanced neural network architectures and models.
These breakthroughs have led to significant successes
across numerous application domains, including intelligent
transportation, augmented reality, healthcare, agriculture,
oceanography, and more. The ACVPR book series aims to
introduce, analyze, and synthesize recent and foundational
research, offering valuable references to both beginners
and expert practitioners. The series covers timely topics
such as:

« Deep Learning for Vision

« Large-scale Foundational Models

« Generative Methods

« Multimodal Learning (vision, audio, language, action,
etc.)

« Neural Fields for Vision

« 3D Computer Vision

« Computational Photography, Display and Illumination

« Video Understanding and Synthesis

« Virtual, Mixed and Augmented Reality

« Biological and Human Vision

« Physics-based Vision

. Vision for Graphics

« Ethics in Computer Vision

« Applications (Robotics, Agriculture, Health, Intelligent
Transportation, Oceanography, Safety/Security, etc.)

This series includes monographs, introductory and
advanced textbooks, and state-of-the-art collections.
Furthermore, it supports Open Access publication mode.

Wei Qi Yan
Robotic Vision

From Deep Learning to Autonomous
Systems

@ Springer

Wei Qi Yan
Department of Computer and Information Sciences,
Auckland University of Technology, Auckland, New Zealand

ISSN 2191-6586 e-ISSN 2191-6594
Advances in Computer Vision and Pattern Recognition
ISBN 978-981-95-4359-5 e-ISBN 978-981-95-4360-1
https://doi.org/10.1007/978-981-95-4360-1

© The Editor(s) (if applicable) and The Author(s), under
exclusive license to Springer Nature Singapore Pte Ltd.
2026

This work is subject to copyright. All rights are solely and
exclusively licensed by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of
translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other
physical way, and transmission or information storage and
retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter
developed.

The use of general descriptive names, registered names,
trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that
such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to
assume that the advice and information in this book are
believed to be true and accurate at the date of publication.

https://doi.org/10.1007/978-981-95-4360-1

Neither the publisher nor the authors or the editors give a
warranty, expressed or implied, with respect to the
material contained herein or for any errors or omissions
that may have been made. The publisher remains neutral
with regard to jurisdictional claims in published maps and
institutional affiliations.

This Springer imprint is published by the registered
company Springer Nature Singapore Pte Ltd.

The registered company address is: 152 Beach Road, #21-
01/04 Gateway East, Singapore 189721, Singapore

Preface

This book has been drafted based on my lectures and
seminars in recent years for postgraduate students at
Auckland University of Technology (AUT), New Zealand.
We have integrated and synthesized materials on robotics,
machine vision, machine intelligence, and deep learning.
Compared with conventional books, this book leads authors
to use the knowledge from digital image processing and
computer vision to control robots with autonomous
systems. Our aim is to provide a resource that benefits
postgraduate students, particularly those who are working
on their theses, by sharing our research outputs and
teaching work to augment their projects.

In this book, we have structured the content with a focus
on knowledge obtained from our seminars. We begin by
explaining fundamental concepts in robotics from
computational point of view. We delve into robotic vision
with deep learning methods. We add new content from
what we have known and applied robotic vision to robotic
control. At the end of each chapter, we emphasize on the
practical implementation of algorithms by using Python-
based platforms and MATLAB toolboxes. Additionally, we
provide a lab session for each chapter with demonstrations
and experiment reporting as well as a list of questions for
the purpose of discussion and reflection.

In this book, our focus is on robotic vision. The book is
to follow our research methodology of computer science
with mathematical background, modeling, algorithms,
experimental implementation, result analysis, and
comparisons.

Before reading this book, we strongly encourage our
readers to have a solid foundation in postgraduate
mathematics. Developing computational knowledge will not

only aid readers to quickly understand this book but also
enable them to engage with relevant journal articles and
conference papers.

This book was written for research students, computer
engineers, computer scientists, and anyone interested in
robotic vision for both theoretical research and practical
applications. Additionally, it is relevant for researchers in
the fields such as machine intelligence, pattern analysis,
and control theory.

Acknowledgements In the past years, we have endowed
in all aspects of robotics to make the book full and perfect.
Following the instructions from our Springer editors,
students, and audiences, the author has detailed the vocal
descriptions, flowchart, data structures, pipelines,
deployments, equations, and algorithms, as well as updated
each chapter with the latest references and citings.
Compared to others, this book emphasizes on fundamentals
of robotics, mobile robots and arm-type robots, robotic
vision, digital image processing, stereo vision, 3D object
reconstructions, deep learning, robotic intelligence and
control, reinforcement learning, and supercomputing as
well as MATLAB Toolboxes and examples.

Thanks to Springer editors who had iterative discussion
for this book to be published. Thanks to our peer colleagues
and students whose materials were referenced and who
have given invaluable comments on this book, especial
thanks to my supervised students, B. Ma, X. Gao, Z. Chen,
G. Yang, R. Tantiya, D. Peng, Y. Huan, Dr. S Mehtab, Dr.].
Qi, Dr. K. Gedara, and Dr. F. Younus, and my colleagues,
Dr. W. Zhu, Prof. X. Wang, Prof. X. Li, and Prof. M. Nguyen.

Competing Interests The author has no competing
interests to declare that are relevant to the content of this
manuscript.

Wei Qi Yan

Auckland, New Zealand
June 2025

About the Author

Wei Qi Yan is with the Department of Computer and
Information Sciences at the Auckland University of
Technology (AUT), New Zealand. His expertise covers
robotics, deep learning, machine intelligence, computer
vision, and multimedia computing.

He is an Associate Editor of ACM Transactions on
Multimedia Computing, Communications and Applications,
a Senior Area Editor of IEEE Signal Processing Letters, a
Section Editor of Springer journal Discover Artificial
Intelligence (Al).

He has worked as an exchange computer scientist
between the Royal Society Te Aparangi (RSNZ) and the
Chinese Academy of Sciences (CAS) in China. He is the
director of joint research laboratory with the Shandong
Academy of Sciences (SDAS) Shandong China, and the
director of the joint laboratory with China Jiliang University
(CJLU), Zhejiang China. He is recognized as one of the
“Top Two Percent of Scientists in the World,” currently
holds the position of Chair of ACM Multimedia Chapter of
New Zealand, and is a Fellow of Engineering New Zealand
(FEngNZ).

List of Symbols
argmax (-) Argument of the maxima

argmin (-) Argument of the minima
p(:|) Conditional probability

J(-) Cost function

A Definition

df(z) Derivative
d; or fI(z) Determinant
det(-)

(63,1 Element b; of vector b,, 1
(wij), . Element w;; of m X n matrix W, .,
E Euclidean space

4 Exist

E(-) Expected value function

exp (-) Exponential function

C! First-order parametric continuity
Y For all

1,n From1lton,ie.,1,2---,n

C Function continuity

N(-) Gaussian or normal distribution
tanh (-) Hyperbolic tangent function
C® Infinite continuity

oo Infinity

< - > Inner or dot product

[Integral

N Intersection of sets

|-]lo L° Norm

| -]l1 L! Norm

| -]l2 L? Norm

| Il L’ Norm

| - ||l L% Norm

log () Logarithm base 10
L Loss function

— Mapping

W ! Matrix W transpose
max (-) Max function

p Mean

€ Member

In (-) Natural logarithm
N Set of natural numbers
||| Norm

% Partial derivative

| Perpendicular

+ Plus or minus

P Point

][] Product

C Proper subset

C?2 Second-order parametric continuity
S Set

Z Set of integer numbers
Z T Set of positive integer numbers
R Set of real numbers

b Shift vector

sgn(-) Sign function

C Subset equal

> Sum

T Tensor space

U Union of sets

o Variance

b' Vector transpose

W Weight matrix

Acronyms

ACCYV Asian Conference on Computer Vision
ACM Association for Computing Machinery
ADAS Advanced Driver Assistance Systems
Al Artificial Intelligence

ANN Artificial Neural Networks

ASCII American Standard Code for Information
Interchange

BERT Bidirectional Encoder Representations
CapsNet Capsule Neural Network

CNN Convolutional Neural Network
ConvNet Convolutional Neural Network
CoT Chain-of-Thought

CPU Central Processing Unit

CVPR International Conference on Computer Vision and
Pattern Recognition

DBM Deep Boltzmann Machine

DDPG Deep Deterministic Policy Gradient
DDS Data Distribution Service

DETR Detection Transformer

DiT Diffusion Transformer

DI Deep Learning

DNN Deep Neural Network

DoF Degree of Freedom

DQN Deep Q-Network

ECCV European Conference on Computer Vision
EQ Emotional Quotient

EI Emotional Intelligence

KF Kalman Filtering

FCNN Fully Connected Neural Network
FFNN Feedforward Neural Network

FK Forward Kinematics

FN False Negative

FoV Field of View

FP False Positive

FSD Full Self Driving

FSM Finite State Machine

FRU Fully Gated Unit

GA Genetic Algorithm

GAN Generative Adversarial Network
GPT Generative Pre-trained Transformer
GPU Graphics Processing Unit

GRU Gated Recurrent Unit

HVS Human Vision System

IBVS Image-Based Visual Servoing
ICCV International Conference on Computer Vision
IoU Intersection over Union

IQ Intelligence Quotient

IK Inverse Kinematics

IRL. Inverse Reinforcement Learning
LILM Large Language Models

LMS Least Mean Squares

LSTM Long Short-Term Memory

MDP

Markov Decision Process

MGU Minimal Gated Unit

MI. Machine Learning

MLP Multilayer Perceptron
MNIST Modified NIST Database
MPC Model Predictive Controller
MRP Markov Random Process
NLP Natural Language Processing
NPU Neural Processing Unit
NURBS Non-Uniform Rational B-Splines
PBVS Pose-Based Visual Servo
PRM Probabilistic Roadmap

RBM Restricted Boltzmann Machine
R-CNN Region-Based CNN

ReLU Rectified Linear Unit
ResNet Residual Neural Network
RNN Recurrent Neural Network
ROI Region of Interest

ROS Robot Operating System

RPN Region Proposal Network
RRT Rapid-Exploring Random Tree
SAD Sum of Absolute Differences
SGD Stochastic Gradient Descent
SSD Sum of Squared Differences
TN True Negative

TP True Positive

TPU Tensor Processing Unit

ViT Vision Transformer

VS

Visual Servoing
YOLO You Only Look Once

Contents

1 Introduction to Robotic Vision
1.1 Overview of Robotic Vision
1.2 Importance and Applications of Robotic Vision
1.3 Key Challenges in Robotic Vision

1.4 Foundational in Machine Learning_ and Deep
Learning

1.5 Mathematics Background

1.6 Prerequisite Mathematics for Robotic Vision
1.6.1 Linear Algebra
1.6.2 Geometry
1.6.3 Probability

1.7 Structure of the Book

1.8 Lab Session: Introduction to Tools and
Platforms

1.9 Exercises

References

2 Robotics
2.1 Mobile Vehicles
2.2 Humanoid Robots
2.3 Navigation
2.3.1 Automata
2.3.2 D* Algorithm

2.3.3 Voronoi Diagram
2.3.4 PRM: Probability-Based Method
2.3.5 RRT: Rapid-Exploring Random Tree
2.3.6 Dead Reckoning

2.4 Mathematics Background

2.5 Robot Arm Kinematics

2.6 Dynamics and Control

2.7 Applications of Robotics

2.8 Lab Session: Mobile Arm with MATIAB

2.9 Exercises

References

3 Image Processing_for Robotics
3.1 Fundamentals of Image Formation
3.2 Camera Calibration
3.3 Essentials of Image Processing
3.4 Image Morphology,

3.5 Feature Extraction for Object Detection and
Recognition

3.6 Image Processing with MATIAB

3.7 Lab Session: Implmenting_ Camera Calibration
with MATILAB

3.8 Exercises

References

4 Stereo Vision and 3D Reconstruction

4.1 Stereo Camera and Stereo Vision
4.2 3D Reconstruction
4.3 Applications of Stereo Vision
4.3.1 Applications of Robot Navigation
4.3.2 Applications in Deep Scene Understanding

4.4 Lab Session: Implementing_Stereo Vision
Systems with MATLAB

4.5 Exercises

References

5 Deep Learning for Robotic Vision

5.1 Overview of Deep Learning Architectures for
Vision

5.2 Convolutional Neural Networks (CNNs) and
YOLO Models

5.2.1 CNN Models
5.2.2 YOLO Models

5.3 RNNSs, Transformers, and Multimodal
Approaches

5.3.1 RNNs
5.3.2 Vision Transformers
5.3.3 Diffusion Transformers

5.4 Lab Session: Training_a Vision Model with
MATIAB

5.5 Exercises

References

6 Robotic Perception and Intelligence
6.1 Perception
6.2 Robotic Intelligence
6.3 Reinforcement I.earning_for Visual Control

6.4 Imitation Learning and Inverse Reinforcement
Learning

6.5 Federated Learning and Distributed Models

6.6 L.ab Session: Implementing_Perception
Algorithms with MATIAB

6.7 Exercises

References

7 Vision-Based Robotic Control
7.1 Basics of Visual Servoing
7.2 Advanced Visual Servoing

7.3 Vision-Based Navigation and Path Planning
Algorithms

7.4 Lab Session: Visual Servoing with MATIAB
7.5 Exercises

References

8 Computational Tools for Robotic Vision

8.2 Modern Computing for Robotics
8.2.1 Supercomputing
8.2.2 GPU Acceleration
8.2.3 Mobile Computing for Robotics

8.3 Tools for Parallel Computing_in Robotics

8.4 1.ab Session: Working with MATI.AB for ROS
and GPU-Accelerated Algorithms

8.5 Exercises

References

Glossary
Names in This Book
Key Points of This Book

Index

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2026
W. Q. Yan, Robotic Vision, Advances in Computer Vision and Pattern Recognition
https://doi.org/10.1007/978-981-95-4360-1_1

1. Introduction to Robotic Vision

Wei Qi Yant
(1) Department of Computer and Information Sciences, Auckland
University of Technology, Auckland, New Zealand

Abstract

In this chapter, robotic vision is delineated along with robotic
control, deep learning, and autonomous systems. Robotic vision is a
crucial subject of robotics and the application of deep learning.
This chapter explores robotic vision using video and image data
from diverse robots (arm-type, mobile, aerial, etc.). The goal is to
build foundational knowledge for vision-based control systems. The
significance of this chapter is to convey the holistic view of robotic
vision.

1.1 Overview of Robotic Vision

Robotic vision—computer vision applied to robotics—enables
machines to perceive environments, interpret, and interact with the
designated environment. By using digital cameras, sensors, and Al-
based algorithms, robotic vision aids robots to recognize visual
objects, navigate spaces, and make intelligent decisions. In this
book, the solutions are derived for robotic vision and visual control
characterized by using specifics of image data and deep learning
algorithms [7, 87]. This chapter encapsulates the fundamentals of
robotic vision [37]. With respect to this book, there are two
concepts, one is robotic vision, and the other is robot vision.
Robotic vision is academic and formal. Robot vision is informal or
casual.

The performance of robotic vision will be critically assessed with
deep learning algorithms, benchmark data, performance measures,

https://doi.org/10.1007/978-981-95-4360-1_1

and the ways to define ground truth. The opportunities of using
robotic vision as a way of information acquisition through complex
robotic systems and applications in artificial intelligence (AI) [14,
61, 71] will be examined.

In this book, the key concepts, methods, and algorithms are
introduced. The content is based on pixel-level digital images, with
a focus on robotic vision, including camera properties and
calibration [93]. The methods are further explored to extract
edges, blobs, motif, silhouette, contour, or shape of visual objects
[38]. Thus, the focus of this chapter is on object segmentation,
object detection and recognition, and object tracking in robotic
vision.

Typically, mobile cameras are considered. Modern mobile
phones allow effortless image capture; unlike analog-era media
requiring digital conversion with a simple tap on the screen, an
image or video can be taken. But previously we have many photos
on newspapers or images from analog videos, and the images and
videos were analogy-based in cassette. Thus, a digital-to-analog
converter (DA converter) is needed for the purpose of conversion
for these images and videos.

Unlike mobile cameras, surveillance cameras are usually fixed in
place [58, 86]. Usually, object detection and recognition, as well as
object tracking [2, 3, 49], in surveillance are implemented through
camera panning, tilting, and zooming (PTZ). However, mobile
cameras can be moved to anywhere, operating with translation and
rotation, etc.

While early digital cameras were costly, modern ubiquitous
sensors enable everyone to take pictures. Nowadays, everyone has
very small cameras mounted on mobile phones. The camera
specifications are beyond 20 years ago, which are available
through metadata such as EXIF. Given an image from mobile
camera, what we would like is to understand that how good this
camera is and what function could be applied to which purpose.

Recently, Tesla conducted FSD (Full Self-Driving) testing. In the
testing, the entire system is completely camera-based. This is an
innovation for robotic vision and control without any LiDAR
support. We should take the step and follow up this change with
our knowledge in deep learning and computer vision [37, 87].

In camera calibration, the distance based on grid board is
calculated with black and white grid patterns. Regarding the

cameras with mega pixels, camera calibration or sensor calibration
is always needed in scene understanding of this real world so as to
correct the distortion and measure the distance from sensors to the
targeted objects [93]. Camera calibration is called geometric
camera calibration, and the term also refers to photometric camera
calibration or is restricted for the estimation of intrinsic
parameters only. Exterior orientation and interior orientation mean
the determination of the extrinsic and intrinsic parameters,
respectively. Through digital images with pixels for camera
calibration, we are able to reconstruct 3D objects. Cameras can
reconstruct the 3D space, including the origin and spatial
dimensions.

The cameras reflect the positions located in 3D space. The
locations are offered by using two cameras so that they quickly
convert the pixel space to the corresponding real 3D space,
bridging the gap between them. Due to various conditions and
scenarios, we may get an image with visual artifacts that may be
too dark, too bright, or too blurry. In image processing, if the
image is too blurry, that means the camera is moving too fast or
zooming operation is very rapid. Hence, how to remove blurs is
challenging work in image processing [88, 89].

If a car is being driven in motorway with the speed of 100
kilometers per hour, the car is a fast-moving robot. For example,
when a traffic sign appears beside the road, a key challenge is
whether the robot can recognize it clearly [85, 96]. It means a
camera is needed to be mounted on the moving vehicle to capture
images [43]. How to capture the image of this traffic sign [65]
timely and visibly with the cameras on high-speed car is a real
problem. The task is relevant to the speed of our algorithms for
image processing and object detection and recognition. Another
example is that, after landed on the Mars, robots need to facilitate
with an unmanned vehicle, and the car is required to be controlled
remotely. The photographs will be taken by using digital cameras
on the vehicle to explore the lands from the Earth. The outcomes of
image processing and analysis are employed for further
exploration.

Stereo vision is built on 3D reconstruction. Computer vision is
related to the 3D information from digital images. By comparing
visual information related to a scene from two vanishing points as
shown in Fig. 1.1, the 3D information can be reconstructed by

examining the relative positions of visual objects. This is similar to
the biological process of stereopsis.

Vanishing Pornt;1: -

Vanishing Point 2

‘‘‘‘‘

';'Vanishing Point 3

Fig. 1.1 Three vanishing points in 3D space

Stereo vision uses two cameras at least to estimate depth. By
comparing horizontal offsets (disparity), it generates a depth map
where larger disparities indicate closer objects. The values in this
disparity map are inversely proportional to the scene depth at the
corresponding pixel locations. For example, in cinema, 3D trains
can be seen on screen. All of these are based on 3D vision. When
we watch the movie through a pair of special glasses, 3D scene will
be generated in our mind. That is applied to movie industry. In 3D
object reconstruction, for example, if we take a slew of
photographs, the 3D objects will be rebuilt.

Stereo vision is highly significant in fields such as robotics to
locate the relative position of 3D objects in the vicinity of
autonomous systems [53]. Other applications for robotics include
visual object recognition, where depth information allows for the
system to separate occluding image components.

1.2 Importance and Applications of
Robotic Vision

Having established camera basics, we now discuss robotic vision.
Robotic vision plays a crucial role in enabling robots to perceive,
interpret, and respond to our surrounding environment [94]. With
multiple images from a group of cameras working together, the
robot is able to understand scenes deeply. Robots with full
intelligence, namely agents, have the ability to make decision
independently after observed the 3D world. Robots equipped with
computer vision systems can understand the surroundings and
make smart decisions without human intervention.

Digital cameras have been designed with very high resolutions.
Assisted with GPS information, vision-based systems improve the
accuracy of robotic operations and manipulations, such as pick and
place, assembly, inspection, and navigation. Vision-based robots
enhance the safety in industries by detecting hazards and avoiding
collisions. With the well-trained deep learning models, vision-based
robots can be operated within the given work envelop, understand
the scene depth, and predict what will happen from the past
disasters [72]. Robots with vision systems are adaptive to dynamic
environments. Vision-equipped robots are adaptive to any changing
conditions in real time based on scene understanding from the
acquired visual information. We thus have the special feature to
showcase that robot perception directly determines the operational
decisions.

Vision systems reduce the needs for complex guides and
sensors, thus lower operational costs. Multiple sensors equipped on
robots will fuse the information and avoid to generate
misunderstandings due to errors [86, 87]. The images and videos
from digital cameras will provide accurate blobs, edges, silhouette,
skeleton, and textures. However, the point cloud systems acquired
from a LiDAR (Light Detection and Ranging) system could not [54]
provide the relevant information. LiDAR systems use a laser to
measure distance and object depth.

1.3 Key Challenges in Robotic Vision

Robotic vision faces the key challenges that impact the
effectiveness and reliability of robots in real-world applications.
Visual object detection and recognition are the predominant tasks
of robotic vision. Accurately identifying and classifying objects from
a camera in diverse environments are tough due to variations in

lighting, view angles, object occlusions, object appearance, etc.
Vision models to handle these variations robustly remain a
significant challenge.

Another challenge is real-time image processing in robotic
vision. Robotics, especially in mobile or autonomous systems, is
waiting for real-time results of vision processing to take the next
step. This places high demands on computing power and lower
complexity of algorithms to accelerate the process of visual object
classification and make decisions instantly. Compared to audio and
images, video processing is much slower and needs GPU
assistance, as well as parallel computing facilities to support the
process based on pixel arrays.

Robots are operating with a real-time system. The changes of
lighting in indoor and weather conditions in outdoor environments
significantly affect the robots to perceive the scenes. Developing
vision systems in real world requests the robustness of algorithms
to observe the environmental variability. This makes sure that
robots can get correct information.

In dynamic environments, keeping correct track of moving
objects while maintaining an accurate map of the environment is a
must. Tracking moving objects across video frames without losing
the identity is computationally expensive and error-prone. Visual
objects may be partially obscured by other objects, making it
exigent for the system to deeply understand holistic scene.
Designing the vision algorithms that can handle partial occlusions
[78, 79], accurately identify objects, and friendly interact with
robots is important for the tasks like grasping and manipulation.

Pertaining to depth perception, understanding 3D environment
from 2D images remains a significant gap, especially for the tasks
like manipulation and navigation. Depth sensors, stereo vision, and
structure-from-motion (SfM) techniques are often adopted, but
they all have limitations such as accuracy or robustness on specific
hardware. Regarding sensor fusion, integrating data from multiple
sensors (e.g., cameras, LiDAR, etc.) to create a coherent
understanding of 3D scene is complicated. The fusion process is
accurate and efficient for the tasks like navigation and autonomous
decision-making.

Robots are controlled from human and machine interactions
(HMIs) through robot operating system (ROS). As robotic vision is
increasingly harnessed to real-world applications, we need to

ensure the safety of both robots and humans interactions and
guarantee the requirements of ethics in decision-making.
Implementing robotic vision systems that perform well in outdoor
conditions as opposed to controlled indoor environments involves
dealing with noise in sensor data, unpredictable object movements,
and unexpected environmental changes.

Chatbots using Large Language Models (LLMs) integrated with
Open WebUI, Dify, CompfyUI, and Ollama models have been
successfully deployed to robotic control [63, 92]. The input and
output of LLMs are challenges of modern computing. The prompts
for inputs and outputs of LLM models should be filtered, especially
visual information from generative models such as Generative
Adversarial Networks (GANSs), autoencoders, and diffusion models
[87]. The hallucination outputs generated from the LLMs due to
unexpected changes should be treated seriously in case of violation
of ethics regulations. Retrieval-Augmented Generation (RAG) and
Model Context Protocol (MCP) are thought as the solutions to
resolve these problems, accompanying with Agent-to-Agent (A2A)
technology [40, 61, 81, 92].

1.4 Foundational in Machine Learning and

Deep Learning

In deep learning (DL), because of new development, all computer
vision textbooks have to be updated at present. For example,
conventional algorithms in face detection and recognition are
based on Viola-Jones object detection framework and Principal
Component Analysis (PCA) algorithms, and the algorithms based
on CNN and RNN models are popular at present. In computer
vision, we have developed a plethora of algorithms from deep
learning for object segmentation, object detection and recognition,
object tracking [2, 3, 49, 71], etc.

Deep learning algorithms are relevant to datasets and ground
truth. The ground truth refers to labels of visual data. Given the
data as samples, we have the labeling process, and also we have
annotations, labels, or tags. After trained our models by taking
advantage of the datasets, the algorithms can output results [20,
21]. We evaluate the performance, and this evaluation should be
quantitative and reflected in computational way.

Why deep learning algorithms are better than those general
machine learning methods? Because deep learning is end to end-
based which can bring various results for us that are able to give
better measurements and comparisons. The previous algorithms
may only conduct face detection and recognition from the front
view; now the new methods can conduct human face detection and
recognition from side views [1, 22, 78, 79].

Deep learning (DL) uses multilayered artificial neural networks
(ANNSs). Inspired by biological neurons, these networks process
data hierarchically—extracting features from raw pixels to high-
level semantics [13, 52]. Artificial neural networks (ANNs) works
like our human brain [61, 80]. The neurons in human brain can be
connected together [35, 56]. We assume a full connection is that
any neurons can establish connections mutually [56]. But the
situation is not true. A few old neurons will be died, and a large
number of new neurons will be grown up. The neurons will be
enlarged or shrunken during its life.

If neurons are connected with each other [56], they will be
deployed with layers. The layer-based structure has been employed
for deep learning algorithms. Hence, multiple layers of neurons are
connected together. Deep learning refers to the depth of what
neural networks were constructed [35]. The deep learning is a
simple change; however, it is powerful, based on the work of
Professor Geoffrey Hinton from Canada, who created the realm of
deep learning, especially for his great contributions in Restricted
Boltzmann Machine, Capsule Neural Networks (CapsNets), and
Deep Belief Nets [29, 33, 45, 70]. Professor Hinton received ACM
Turing Award 2018 in 2019 and Nobel Prize in physics in 2024.

In 2024, OpenAl created the Sora, a text-to-video model. The
model generates short video clips based on user prompts, which
can extend the existing short videos [62]. The model is a diffusion
transformer: a denoising latent diffusion model with one
transformer as the denoiser. A video is generated in latent space by
denoising 3D patches. A video-to-text model was applied to create
detailed captions on videos. This is a great advance. Furthermore,
OpenAl ChatGPT and DeepSeek are red-hot currently. How to
embed the deep learning algorithms into chatbots to develop our
own interface and applications is an interesting topic.

If we look at the history of modern computers, it is easy to find
how this technology was developed. In 1945, the first electronic

computer ENIAC (i.e., Electronic Numerical Integrator and
Computer) was developed. ENIAC was the first programmable,
electronic, general-purpose digital computer, completed in 1945. In
1957, this world saw a perceptual IBM computer. We saw the chain
rule in 1974 as shown in the Appendix of this chapter. Later, we
have the multilayer perceptron.

From 1995 to 2015, Support Vector Machine (SVM) was taken
into dominant consideration. The SVM algorithm was the primarily
part of machine learning. In machine learning, SVMs are
supervised max-margin models that analyze data for pattern
classification [1, 14, 24, 64].

Pertaining to deep learning, the state-of-the-art (SOTA) model is
transformer [12, 29]. Transformer models have the advantage
without recurrent units and require less training time than earlier
recurrent neural architectures (RNNs) such as long short-term
memory (LSTM). Later variations have been widely adopted for
training Large Language Models (LLMs) on large datasets [4, 6].

While CNNs and RNNs dominated early deep learning, newer
architectures like transformers now offer advantages in speed and
scalability. Reinforcement learning [9, 57], transfer learning [60],
etc. further expand capabilities. With these algorithms, robots now
can clean floors, charge batteries, etc. When the robots start
working, they will avoid obstacles [74]. Figure 1.2 shows a mobile
robot is working.

Fig. 1.2 A mobile robot is working

Reinforcement learning is based on agent interactions with an
environment [9, 57]. Given ample data for the algorithms to be
trained, the reinforcement learning models are spirally becoming
better through iterative interactions, namely updating states,
actions, and rewards; these elements follow the episode sequence
of reinforcement learning [73].

In deep learning, the existing models are harnessed to conduct
classification with unknown classes of samples. The accuracy is not
so high at very beginning, but if more samples are fed up, the
accuracy rate of this model will be beefed, and this is called
transfer learning [60].

We have a deep learning playground prototype which was
developed by Google based on TensorFlow. On the interface, we
add layers and neurons of neural networks and operate the neuron
connections [56, 87]. Most of beginners started studying deep
learning from this software. While increasing the number of layers
and the number of neurons on each layer, the classification
accuracy will be increased.

A second part of deep learning models is called RNN (recurrent
neural network). In RNNs, we have the input layer, hidden layers
or invisible layers, and output layer. The input layer and output
layer are called visible layers, and the invisible layers are named as
latent layers. Through using LSTM, we are able to predict the state
changes, like weather changes, changes of exchange rates,
changes of housing markets, stock markets, or share markets.
RNNSs are seen as very deep feedforward networks (DFNs) in
which all the layers share the same weights [35]. RNNs process an
input sequence maintaining in the hidden units that implicitly
contains information about the history of all the past elements of
sequence [13]. Most Natural Language Processing (NLP) systems
rely on gated RNNs [6], such as LSTMs and gated recurrent units
(GRUs), with added attention mechanisms [34, 75, 95]. RNNs
(LSTM, GRU, etc.) have been firmly established in sequence
modeling and transduction problems such as language modeling
[44, 50] and machine translation [G].

RNNs follow the mechanism of Turing machine. Turing machine
is an idealized model of a central processing unit (CPU) that
controls all data manipulation throughout a computer. Turing
machines (e.g., FSM) and memory networks are being employed

for the tasks that would normally require reasoning [24, 61] and
symbol manipulations [5, 61].

Transformer is based solely on attention mechanisms [34, 75,
95], dispensing on recurrence and convolutions entirely [44, 50].
Transformers are the state-of-the-art (SOTA) deep learning model
for dealing with sequences [48], e.g., in text processing [6],
machine translation [36], etc. Transformers were invented in 2017
by Google Brain for NLP problems, replacing RNN models (e.g.,
LSTM) [83].

Transformer models are trained with large datasets.
Transformer is a deep learning model that adopts the mechanism
of self-attention [75, 95], deferentially weighting the significance of
each part of the input data. Like RNNs, transformers were
designed to handle sequential input data. Unlike RNNs,
transformers do not necessarily process the data in order [48]. The
attention mechanism [34, 75, 95] provides context for any position
in the input sequence.

Transformers were previously employed for English and French
translation. English has its grammar, and correspondingly, French
has the relevant grammar. While speaking English, the speech can
automatically be translated to French by using machine translation
[41, 42]. Now, this has been implemented in Microsoft Office
software like Microsoft PowerPoint and Microsoft Teams. If we play
a PowerPoint file, the captions between two languages could be
toggled in real time [6]. In transformer models, token pairs are
taken into consideration. If we translate English to other languages
[44, 50], another corresponding set of tokens should be already
there. For example, there is a set in Chinese around 10,000 tokens.
Hence, the transformers will search for a high probability matching
between the two languages for translating.

Supercomputing can serve us in computing acceleration; the
typical one is NVIDIA GPU. GPUs are thought as the computing
power. We need these chips because transformer is parallel
computation-based. In parallel algebra, if two vectors are added
together, GPU computing is much faster than that of CPUs. With
GPUs, all the results will be popped up at the same time, and we
take advantage of parallel computing. Currently, the multicore
programming and multi-thread computing are adopted to carry out
these tasks. Figure 1.3 shows a GPU laptop is working for object
detection and recognition.

Fig. 1.3 A GPU laptop is working

As well known, Tesla has developed and adopted the ASD
system, which is completely computer vision-based. This new
solution for robotic vision and visual control tasks is characterized
by using the strengths and specifics of image data and deep
learning algorithms, as well as scene understanding for vehicle
control. Visual control means we make use of digital cameras to
understand the scene and control the mobile robot. Previously, we
made use of sensors and computers to control robots. Nowadays, a
high-resolution and high-speed camera is mounted on an
unmanned vehicle to control the car. Consequently, visual servoing
and ROS through wireless communications in robotics play the
decisive role in operating unmanned vehicles. Hence, this is the
reason why we make use of robotic vision as the key part of
autonomous systems.

Robots assist human in waste classification and fruit pick and
with milk power, beef and lamb, or other agricultural products.
Especially for the countries that have not so much population,
robots are an effective tool to save human labor and resolve the
lack of professionals, such as for cleaning high buildings and
painting on the surface of cars. The toxic work is very hazardous,
which is not beneficial for human health and safe. But robots have
not these constraints and limitations. While cleaning our floor, if
we have a robot to vacuum and mop the ground, it works for us
without stopping. Even if it runs out of battery, it can go back to
the charging station and charge itself. After charged, the robot
continues the cleaning work. This is a typical kind of applications.

Robotics is a typical application of deep learning [7, 51]. For
example, while walking, if we close our eyes, we cannot walk too
far. Compared with human hearing system, human vision system
(HVS) is much crucial, which occupied 75% information intake [8,
10]. From this point of view, lost vision is a real troublesome issue.
Robots are facilitated with sensors and digital cameras. Boston
Dynamics is good at computer vision. All of vision systems are
relevant to computable methods or algorithms, no matter whether
our computers are fast or slow, because a computer is robot’s
brain, we thus process information in multiple ways [52, 80].

Generally, CPU is a bottleneck in modern computers, and we
cannot take breakthrough for a few of years. The limited space
could hold too many adders in a CPU; it is called bottleneck for
computing power. Fundamentally, this problem could be resolved
by using advanced algorithms like DeepSeek, from software point
of view the GPU (Graphics Processing Unit), TPU (Tensor
Processing Unit), and NPU (Neuron Processing Unit) can resolve
the problems from hardware point of view. Under GPU support, the
moving speed of a robot will be much faster than our human body.
In these cases, the urgent issue is computing power. Computing
power is the essence of supercomputing. After read this book, our
readers are expected to create the fastest robots by using GPU
chips at hand, which will accelerate resolving these problems in
the real world.

MATLAB software was designed for numerical analysis and
simulation which is applied to scientific research, like robot
navigation and control because MATLAB software is robust,
reliable, and stable [76]. The arm-type robots could be controlled
by using MATLAB software collaborating with Robot Operating
System (ROS). ROS is a set of middle software (Middleware) with
multiple libraries and tools that assists us to explore and exploit
robotic applications. If a robot is required to be operated, it will be
started or halted immediately under the control, independent of
other hardware. MATLAB ROS is excellent in robotic control, which
provides the standard interface, which is the reason why industry
sector likes using MATLAB software.

1.5 Mathematics Background

A Bézier curve [16] is presented as a parametric curve in computer
graphics [17]. The curve is defined by a set of control pointsP
through P,,, where n is the order of curve (n = 1 for linear, n = 2
for quadratic, n = 3 for cubic, etc.). The first and last control points
are always the end points of the curve. This set of discrete points

defines a smooth and continuous curve [66, 91] as shown in Fig.
1.4.

Bezier Curve (De Casteljau's Algorithm)

1.0 4 —— Bezier Curve (De Casteljau)
@ Control Points
—-== Control Polygon

-0.2 4 vt

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1.4 The control polygon and Bézier curve

Typically, a Bézier curve with a control polygon was developed
for designing curves in car industry. The algorithm is based on De
Casteljau’s algorithm. The pseudocode is shown in Algorithm 1. In
numerical analysis [59], De Casteljau’s algorithm is a recursive
method to implement polynomials in Bernstein form or Bézier
curves [15, 16]. De Casteljau’s algorithm is employed by splitting a
single Bézier curve into two with an arbitrary parameter. The
algorithm is numerically stable compared to direct evaluation of

polynomials. Figure 1.4 shows a Bézier curve which was

implemented by using De Casteljau’s algorithm [17]. The
corresponding source code in Python is shown in Fig. 1.5.

import numpy as np
import matplotlib.pyplot as plt

De Casteljau's algorithm to calculate a point on the Bezier curve at parameter t
def de_casteljau(control_points, t):

"""Recursively calculates a point on the Bezier curve at parameter t using De Casteljau's algorithm.™"""

control_points = np.array(control_points)
while len(control_points) > 1:

control_points = (1 - t) * control_points[:-1] + t * control_points[1:
return control_points[@]

Function to generate the Bezier curve using De Casteljau's algorithm
def bezier_curve_de_casteljau(control_points, num_points=100):
t_values = np.linspace(@, 1, num_points)
curve = np.array([de_casteljau(control_points, t) for t in t_values])
return curve

Control points for the Bezier curve
control_points = np.array([[0, @], [0.3, 0.6], [0.6, -0.3], [1, 111)

Generate the Bezier curve using De Casteljau's algorithm
bezier_casteljau = bezier_curve_de_casteljau(control_points)

Plotting the Bezier curve
plt.figure(figsize=(6, 6))

plt.plot(bezier_casteljaul:, @], bezier_casteljaul:, 1], label="Bezier Curve (De Casteljau)", color="blue")

plt.scatter(control_points[:, @], control_points[:, 1], color="red", label="Control Points")

plt.plot(control_points[:, @], control_points[:, 1], linestyle="—-", color="gray", label="Control Polygon")

plt.title("Bezier Curve (De Casteljau's Algorithm)")
plt.legend()

plt.grid(True)

plt.show()

Fig. 1.5 The source code for implementing a Bézier curve in Python

Algorithm 1: The algorithm for Bézier curve
implementation

Input: List of control points Py, Py, P, € 728 parameter ¢ € [0, 1]
Output: Point B(r) on the Bézier curve

1 Let B;m <« P;, fori = 0ton;

2 forr < | ton do

3 fori < Oton —rdo

s | | B —a-0n-B7" 4B
5 return B}}”}

The polygon formed by connecting the control points with straight
lines is called control polygon. The convex hull of control polygon

contains the Bézier curve. A quadratic Bézier curve is the path
traced by the function B(t), given points Py, P, and P5.

B(t) = (1 —t)°Py+t(1 — t)P; + 2Py, t € [0, 1] (1.1)
The first derivative of Bézier curve with respect to t is
Bi(t) = 2(1 — t)(P1 — Po) + +2¢(Py — Py),t € [0,1] (1.2
The second derivative of Bézier curve with respect to t is
B//(t) = 2(P2—2P1 + Po),t c [0,].] (1.3)
A quadratic Bézier curve is a segment of a parabola. The cubic
curve is defined as a linear combination of two quadratic Bézier
curves
B(t) - tBPo,Pl,Pz (t) + (1 T t)BP1,P2,P3 (t)7t S [O’ 1] (1.4)
Hence, the Bézier curve of degree n is recursively implemented
by using a linear interpolation of a pair of corresponding points in
two Bézier curves. Hence, we have

B(t) = Z;O bi(t)Pi(t), ¢ € [0,1] (1.5)

where the points P;,7 = 0,n,n € N, are called control points.
The polynomial b;,(¢) is the Bernstein basis of degree n.

bi(t) = CL(1—)t ¢ [0, 1] (1.6)
wherei =0,n,n € Z™.
C’Z—m,n>zzn€ZJr (1.7)
The derivative for a Sl_lfve is
Bl(t) =n Zizo b%_l(t)(PH—l — Pi),t S [0, 1] (1.8)
Given n + 1 control points Py, P1,...,P,, the rational Bézier
curve is given by
C(t) = ZZZ,?“@E Z Ri(t)P;,t € [0,1],0 < w; € R* (1.9)
where ‘
Ri(t) = % te[0,1,0 <w; € RT (1.10)

More generally, we have nonuniform rational B-spline curves
(NURBS) [11, 90, 91]
C(t) = ZileVNE E R (P, €[0,1],0 < w; € RF (LD
where N/ (t) is the basis functlon of a B-spline curve.

This algorithm is applied to the smooth trajectories in robotics
[51]. Because the control polygon allows to show whether or not
the path collides with any obstacles [74], Bézier curves are

harnessed in producing robot trajectories [91]. The derivatives are
utilized in calculation of dynamics and control effort (torque
profiles) of the robotic manipulator.

1.6 Prerequisite Mathematics for Robotic
Vision

1.6.1 Linear Algebra

In image processing, as well known, images are stored as an array
of pixel values. Correspondingly, linear algebra is needed,
especially vectors and matrices like what we have developed in
MATLAB. Vectors and matrices in linear algebra combine separate
scalar data into a single, multidimensional group, which are to

form finite sequences of numbers with a fixed length, such as
vector V and matrix M.

V:(vl,vz,...,vn)T (1.12)
where the dimension of vectorsisn, v;, 2 =1,2,...,n,andn € N is
the element of vector V. Similarly, we have matrix M with
dimension n X n

mip Mi2 -+ My
ma1 M22 -+ Mp2
M, ., = : Lo : (1.13)
Mmn1 Mp2 - Mpp
wherem;; € R,i=1,...,nand j=1,...,n, is the element of

matrix M,,,,,. In linear algebra, matrix M has its determinant
det(M), eigenvalues, and eigenvectors which has been applied to
resolve various mathematical problems such as solving linear
systems. MATLAB can assist us to resolve these problems quickly.
In image processing, image manipulations (e.g., rotation,

scaling, and translation) and image analysis in frequency domain
need the transformation matrices T3y«3.

x! T

y | =Tooa- |y (1.14)

where (z,y) and (x/,y/) are the locations of a pixel on the image

before and after the transformation.
(- cos (o) sin (a) Ax]

Ty— |~ sin (&) - cos (o) Ay (1.15)
0 0 1

where « is the angle of rotation along z-axis, and S and + are
scaling factors along x and y directions, respectively. Ax and Ay
are the shifts along x, y, directions, respectively. Hence, det(T) # 0
. More broadly, the matrix T is employed to represent geometric
transformations in 3D space. The matrix could be generalized for
Affine transformation and projective transformations. An affine
transformation is

t11 ti2 t13
to1 Toa a3
Ts3x3 = (1.16)
t31 t32 133

where ¢; ; is the element (¢, j) of matrix T3, det (T) # 0.
Regarding rotation, given two angles a@ € R and 8 € R, we have
cos (a +) =cos (a) cos (B) — sin () sin (B) (1.17)
sin (o + B) =sin (a) cos (B) + cos (a) sin (B) (1.18)
By using rotation matrices (orthogonal matrices), the
determinant equals 1.
cos (o) sin (@)

Rox2 = | —sin (a) cos (a) (1.19)

where «a is the angle of clockwise rotation. Regarding
counterclockwise rotation,

cos (@) — sin ()
Roxe = | | (1.20)
sin (@) cos (a)

Regarding translation using a shift matrix for translation,
1 0 Azx

Soxz =10 1 Ay (1.21)

where Axz and Ay are the shifts along x and y directions,
respectively. If rotation and translation are combined in a
homogeneous transformation matrix, then

cos (@) sin () Az

H,.3 = |—sin (a) cos (o) Ay (1.22)
The homogeneous transformationH is operated in this way
x! [cos (a) sin (o) Ax] x
/ — sin (a) cos (a) A
v | _ (@) cos(a) Ay| [y 1.23)
1 0 0 1 1

A perspective transformation is a linear transformation that
changes the appearance of lines and objects. The perspective
transformation is

x/ 10
y|=2L10 1| -]y (1.24)

where (z,¥, 2z) € R? is a point in 3D space, and fis the focal length
of the camera.

1.6.2 Geometry
In geometry, a straight line is

Ar+By+C =0 (1.25)
where A, B,C € R are constants, and (z,y) € R%. Typically, this
equation is applied to pattern classification. We denote the straight
line in parametric form

{$:$o+t'(ﬂ31—$0)

y=1yo+t-(y1—Yo)
where (zg, o) and (z1,y;) are starting point and end points of a
straight line, respectively, and t € R is the parameter. If the slop is
denoted as k,

(1.26)

k= %,ml;&azo (1.27)
We have
y=1yo+ k- (x—xo) (1.28)

where k is the slope rate. The slope of a straight line is a measure
of its steepness. Mathematically, the slope is calculated as the

change in y divided by change in x. Hence,
y=k-z+0b (1.29)
where b and k are constants. Furthermore, we denote conic curves
or quadratic curve as
F(z,y) = Az?> + Bxy + Cy*+ Dz + Ey+ F (1.30)
where A # 0, A, B,C, D, E, F € R are the constants. (z,y) is the
point in 2D space. Hence, the quadratic curve is

T
F(xay) — (way)M<y) (1.31)
where My = {m;;},. ., is a matrix
M= | m”] (1.32)
ma1 MMa22

Hence, any quadratic curves are possible to be converted to its
standard form after a series of transformations

A O
= X" MX 1.33
[0)\2] (1.39)

where X is the matrix consisting of eigenvectors, det(X) # 0.
A1 # 0 and A2 # 0 are eigenvalues.

1
10 A 0] O
I= = ! 1.34
[0 1] [0 A2”o AL] (134

Thus, we obtain function F/(z,y) after a series of
transformations from function F(z, y)
Fi(z,y) = 2% + y? (1.35)
Given a polynomial,
flx) =z +2z+1 (1.36)
where x € R. We denote it in the way of matrix

f(z) = (2,1) E ﬂ (T) (1.37)

Generally, if we have a general polynomial,

flz) = a0+ Zi:1 a;z’ (1.38)

wherea, #0,a; € R,1=0,1,...,n,n € N. We denote it as

(P11 P12 - Pt ot

P21 P22 - Dot L1
f(a';):(xs,ws_l,...,l) (]_39)

Ps1 Ds2 -+ S2t 1

where s +t =n, n,s,t € N. If a curve is smooth, the derivatives
exist f(z) € C"[a,b],n € N.If n =0, the function f(z) is
continuous.
A curvature is the reciprocal of radius of curvature, that is,
k=+ (1.40)
where R is the radius of the osculating circle. A parametrically
defined curve in three dimensions is given in Cartesian coordinates
by using v(t) = (2(t),y(t), z(t)) ', and the curvature is
k— v <y

IRk
where X denotes the vector cross product.

In geometry, a geodesic is a curve that is the locally shortest
path (arc) between two points in a surface or more generally in a
Riemannian manifold [39]. The international nautical mile is
defined as exactly 1,852 meters. The derived unit of speed is knot,
namely one nautical mile per hour.

In this section, we denote all elements of linear algebra in the
matrix way. The reason is that we expect to easily compute the
values on computers for various programming.

1.6.3 Probability

Starting from Bayes’ theorem, Bayes’ law or Bayes’ rule is

p(aly) = 2L (1.42)
where p(x|y) € [0, 1] is the conditional probability of p(z) € [0, 1],

given p(y) € [0, 1]. p(z,y) € [0,1] is the joint probability.

(1.41)

p(z,y) = p(z|y)p(y) = p(y|z)p(z) (1.43)
If p(z,y) is independent, we have
p(z,y) = p(z|y)p(y) = p(y)p(z) (1.44)

Entropy is the measure of missing information before reception.
The definition of information entropy is expressed in terms of a
discrete set of probabilities

H(X)=- inexp(mi) In p(z;) (1.45)

where X = {z;,7i=1,...,n,n € N}. Mutual entropy is based on
Bayes’ theorem.

H(X,Y) :H(X|Y)+H(Y) :H(Y|X)+H(X) (1.46)
where Y = {y;,i=1,...,n,n € N}.
Hence,
H(Y) :H(X,Y) —H(X\Y) (1.47)
H(X) :H(X,Y) —H(Y\X) (1.48)

Relative entropy is called Kullback-Leibler (KL) divergence or I-
divergence, which is a type of statistical distances, a measure of
how much a model probability distributionQ is different from a true
probability distribution P.

Hyg (P Q) = inex P(z;) gg; (1.49)
where Hir (P | Q) # Hxr(Q || P).

1.7 Structure of the Book

This book is organized in a natural order that aligns with our
understanding of robotics. We first explore what robots are and
how they function. Then, we delve into image processing and
computer vision for robotic scene understanding, with a particular
focus on stereo vision and 3D surface reconstruction.

Rather than relying on traditional machine learning methods, we
directly utilize deep learning for object detection and recognition in
robotic vision. We investigate how deep learning can be applied to
robot control and navigation. Additionally, we introduce Robot
Operating System (ROS), parallel computing (e.g., GPU, FPGA,
etc.), and mobile computing for human and robot interactions
(HRIs). Through our design and analysis of robotic systems, we aim
to expand the application of robots into broader research areas,
including manufacturing, industrial automation, autonomous
vehicles, and various applications. Finally, we discuss the emerging
trends and urgent applications in the field.

1.8 Lab Session: Introduction to Tools and
Platforms

At the end of this chapter, all readers are recommended to
complete the lab report. Please fill in the form shown in Table 1.1
after each lab session (2 hours).

Table 1.1 Lab report for robotic vision

Name
Email

Lab date

| Submitted date
Project title

Lab objectives

Configurations and settings

Methods 7
“Workflow

Datasets

Input

Oﬁtput

Testing steps

Bugs or problems

Result analysis
"Conclusion/reflection

References

<First Name Last Name>

<firstname.lastname @ mailbox >

<dd-mm-yy>
| <dd-mm-yy>

<A clear and concise title that accurately

reflects the content of the experiment or project>

| <The goal, aim, or purpose, hypotheses, etc.>

<The preferences, software, hardware, platforms, tools, etc.>
<The relevant scientific theories or concepts >

<The step-by-step procedure for the experiment>

<The data and materials for your experiments>

<image filename, size, resolution >

<image filename, size, resolution>
<Functional and non-functional testing methods step by step>
<The system error code, lines of the code>

‘<The tables, graphs, and figures, etc.>

<The strengths and weaknesses, or learned from this project >

<MATLAB website>

Appendix: <Source codes with comments and line numbers>

1.9 Exercises

Question 1.1 In robotics, why the position and orientation of
robots are so important?

Question 1.2 In robotics, how to understand the trajectory of a
moving object?

Question 1.3 Why De Casteljau’s algorithm for implementing
Bézier curves is independent on device resolution?

Question 1.4 What are the challenges of robotic vision?

Question 1.5 What are the differences between machine learning
and deep learning?

Question 1.6 In deep learning, what is the relationship between
RNNs and Transformers?

Question 1.7 What is NURBS curve in Computer-Aided Geometry
Design (CAGD)?

Appendix: History of Computing

« 2025: ACM Turing Award 2024 (Andrew Barto and Richard
Sutton)

« 2025: Qwen3, YOLOv13

« 2024: Nobel Prize in Physics (J. Hopfield and G. Hinton) and
Chemistry (D. Hassabis)

« 2024: OpenAl Sora, YOLOvV9, YOLOv10, YOLO11

. 2023: YOLOVS, Diffusion Transformer(DiT), DALL-E

« 2022: ChatGPT, YOLOvV7 [23, 46] and YOLOvV6

« 2021: Vision Transformer (ViT)

« 2020: YOLOV4 and YOLOvV5, GPT-3

« 2019: ACM Turing Award 2018

« 2018: YOLOvV3 and Mask R-CNN [32]

« 2017: CapsNets and YOLO9000 [47, 49]

« 2016: You Only Look Once (YOLO) [67]

« 2015: ResNet [30, 31, 77], GoogLeNet, and Fast/Faster R-CNN
[25, 68]

« 2014: GAN and VGG [28], AlphaGo (DeepMind)

« 2013: Region-Based CNN(R-CNN) [26, 27]

« 2012: AlexNet (ImageNet) [69]

« 1997: Long Short-Term Memory [4] (LSTM)

« 1990: Convolutional Neural Networks (CNNs or ConvNets)

. 1986: Restricted Boltzmann Machine (RBM)

. 1986: Iterative Dichotomiser 3 (ID3)

« 1974: Multilayer Perceptron (MLP)

« 1970: Automatic Differentiation (AD, e.g., Chain rule)

« 1969: XOR Logic Function

« 1960: Least Mean Squares (LMS)

« 1957: Perceptron (IBM 704)

« 1945: ENIAC (Electronic Numerical Integrator and Computer)

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

Alpaydin E (2009) Introduction to machine learning. MIT Press, Cambridge

An N (2020) Anomalies detection and tracking using siamese neural networks.
Master’s thesis, Auckland University of Technology, New Zealand

An N, Yan W (2021) Multitarget tracking using Siamese neural networks. ACM Trans
Multimedia Comput Commun Appl 17:1-16

Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with
gradient descent is difficult. IEEE Trans Neural Netw 5(2):157-166

Caruana R, Lawrence S, Giles CL (2001) Overfitting in neural nets: backpropagation,
conjugate gradient, and early stopping. In: Advances in neural information processing
systems, pp 402-408

Collobert R, Weston J (2008) A unified architecture for natural language processing:
deep neural networks with multitask learning. In: International conference on
machine learning, pp 160-167

Corke P (2017) Robotics, vision and control, 2nd edn. Springer Nature, Berlin
Cover T, Thomas J (1991) Elements of information theory. Wiley, Hoboken

Dabney W et al (2020) A distributional code for value in dopamine-based
reinforcement learning. Nature 577:671-675

De Boer PT, Kroese DP, Mannor S, Rubinstein RY (2005) A tutorial on the cross-
entropy method. Ann Oper Res 134(1):19-67
[MathSciNet]

de Boor C (1978) A practical guide to splines. Springer, Berlin. ISBN 978-35-40903-
56-7

Dosovitskiy A et al (2021) An image is worth 16x 16 words: transformers for image
recognition at scale. In: International conference on learning representations

Dunne RA, Campbell NA (1997) On the pairing of the softmax activation and cross-
entropy penalty functions and the derivation of the softmax activation function. In:
Australia conference on the neural networks, vol 181, p 185

Ertel W (2019) Introduction to artificial intelligence. Springer International
Publishing, Berlin

Farin G (1997) Curves and surfaces for computer-aided geometric design. Elsevier,
Amsterdam. ISBN 978-01-22490-54-5

Farin G (2002) Curves and surfaces for CAGD: a practical guide, 5th edn. Morgan
Kaufmann, Burlington

Foley van D (1996) Computer graphics: principles and practice, 2nd edn. Addison-
Wesley, Boston

http://www.ams.org/mathscinet-getitem?mr=2136658

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Fu Y (2020) Fruit freshness grading using deep learning. Master’s Thesis, Auckland
University, New Zealand

Fu Y (2020) Fruit freshness grading using deep learning. Springer Nature Computer
Science, Berlin

Gao X (2021) A method for face image inpainting based on generative adversarial
networks. Master’s Thesis. Auckland University of Technology, New Zealand

Gao X, Nguyen M, Yan W (2021) Face image inpainting based on generative
adversarial network. In: IEEE IVCNZ

Gao X, Nguyen M, Yan W (2023) A high-accuracy deformable model for human face
mask detection. In: PSIVT

Gao X, Nguyen M, Yan W (2024) Human face mask detection based on deep learning
using YOLOv7+CBAM. In: Handbook of research on Al and ML for intelligent
machines and systems, pp 94-106

Gashler M, Giraud-Carrier C, Martinez T (2008) Decision tree ensemble: small
heterogeneous is better than large homogeneous. In: International conference on
machine learning and applications, pp 900-905

Girshick R (2015) Fast R-CNN. In: IEEE international conference on computer vision,
pp 1440-1448

Girshick R, Donahue J, Darrell T, Malik J (2016) Region-based convolutional networks
for accurate object detection and segmentation. IEEE Trans Pattern Analy Mach Intell
38(1):142-158

Gkioxari G, Girshick R, Malik J (2015) Contextual action recognition with R-CNN. In:
IEEE ICCV, pp 1080-1088

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A,
Bengio Y (2014) Generative adversarial networks. In: International conference on
neural information processing systems, pp 2672-2680

Goodfellow I, Bengio Y, Courville A (2016) Deep learning, MIT Press, Cambridge

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In:
IEEE CVPR, pp 770-778

He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In:
European conference on computer vision, pp 630-645

He K, Gkioxari G, Dollar P, Girshick R (2017) Mask R-CNN. In: IEEE ICCV, pp 2980-
2988

Hinton G, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets.
Neural Comput 18(7):1527-1554
[MathSciNet]

Ji H, Liu Z, Yan, W, Klette R (2019) Early diagnosis of Alzheimer’s disease based on
selective kernel network with spatial attention. In: IAPR ACPR, pp 503-515

http://www.ams.org/mathscinet-getitem?mr=2224485

35.

36.

37.

38.
39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Kasabov N (1996) Foundations of neural networks, fuzzy systems, and knowledge
engineering. The MIT Press, Cambridge

Kim Y (2014) Convolutional neural networks for sentence classification. In:
Conference on empirical methods in natural language processing, pp 1746-1751

Klette R (2014) Concise computer vision: an introduction into theory and algorithms.
Springer-Verlag London, London

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436-444
Lee JM (2018) Introduction to riemannian manifolds. Springer, Berlin

Lewis P et al (2020) Retrieval-augmented generation for knowledge-intensive NLP
tasks. In: Advances in neural information processing systems, 33

Liang S (2021) Multi-language datasets for speech recognition based on the end-to-
end framework. Master’s Thesis, Auckland University, New Zealand

Liang S, Yan W (2022) A hybrid CTC+Attention model based on end-to-end
framework for multilingual speech recognition. Multimedia Tools Appl 81:41295-
41308

Liu X (2019) Vehicle-related scene understanding using deep learning. Master’s
Thesis, Auckland University of Technology, New Zealand

Liu Y (2022) Sign language recognition from digital videos using feature pyramid
network with detection transformer. Master’s Thesis, Auckland University of
Technology

Liu X, Yan W (2021) Traffic-light sign recognition using capsule network. Multimedia
Tools Appl 80(10):15161-15171

Liu X, Yan W (2023) Vehicle detection and distance estimation using improved
YOLOv7 model. In: Deep learning, reinforcement learning and the rise of intelligent
systems. IGI Global Scientific Publishing, Hershey

Liu X, Yan W, Kasabov N (2020) Vehicle-related scene segmentation using CapsNets.
In: IEEE IVCNZ, pp 1-6

Liu Z et al (2021) Swin transformer: hierarchical vision transformer using shifted
windows. In: IEEE ICCV

Liu X, Yan W, Kasabov N (2023) Moving vehicle tracking and scene understanding: a
hybrid approach. Multimedia Tools Appl 83:1-18

Liu Y, Nand P, Hossain M, Nguyen M, Yan W (2023) Sign language recognition from
digital videos using feature pyramid network with Detection Transformer. Multimedia
Tools Appl 82:21673-21685

Lynch K, Park (2017) F modern robotics: mechanics, planning, and control.
Cambridge University Press, Cambridge, MA

Manning C, Raghavan P, Schutze H (2008) Introduction to information retrieval.
Cambridge University Press, Cambridge

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.
66.

67.

68.

69.

Mehtab S (2022) Deep neural networks for road scene perception in autonomous
vehicles using LiDARs and vision sensors. PhD Thesis, Auckland University of
Technology, New Zealand

Mehtab S, Yan W, Narayanan A (2022) 3D vehicle detection using cheap LiDAR and
camera sensors. In: International conference on image and vision computing New
Zealand

Mi Z, Yan W (2024) Strawberry ripeness detection using deep learning models. Big
Data Cogn Comput 8(8):92

Mignan A, Broccardo M (2019) One neuron versus deep learning in aftershock
prediction. Nature 574(7776):E1-E3

MnihV et al (2015) Human-level control through deep reinforcement learning. Nature
518:529-533

Molchanov VV, Vishnyakov BV, Vizilter YV, Vishnyakova OV, Knyaz VA (2017)
Pedestrian detection in video surveillance using fully convolutional YOLO neural
network. In: Automated visual inspection and machine vision II, vol 10334

Muscat J (2014) Functional analysis, Springer, Berlin

Niculescu-Mizil A, Caruana R (2007), Inductive transfer for Bayesian network
structure learning. In: International conference on artificial intelligence and statistics

Norvig P, Russell S (2016) Artificial intelligence: a modern approach, 3rd edn.
Prentice Hall, Upper Saddle River

Peebles W, Xie S (2023) Scalable diffusion models with transformers. In: IEEE/CVF
international conference on computer vision (ICCV), pp 4172-4182

Peng D (2025) Vision perception optimization and adaptive control for resource-
constrained platform: a ping-pong ball pick & place system. Master’s Thesis,
Auckland University of Technology, New Zealand

QiJ, Nguyen M, Yan W (2023) CISO: Co-iteration semi-supervised learning for visual
object detection. Multimedia Tools Appl 83:1-17

Qin Z, Yan W (2020) Traffic-sign recognition using deep learning. In: ISGV

Ravankar A, Ravankar AA, Kobayashi Y, Hoshino Y, Peng C-C (2018) Path smoothing
techniques in robot navigation: state-of-the-art, current and future challenges.
Sensors 18(9):3170

Redmon], Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-
time object detection. In: IEEE CVPR, pp 779-788

Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in neural information
processing systems, pp 91-99

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Berg AC (2015) ImageNet
large scale visual recognition challenge. Int] Comput Vision 115(3):211-252
[MathSciNet]

http://www.ams.org/mathscinet-getitem?mr=3422482

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.
82.

83.

84.

85.

86.

87.

Sarikaya R, Hinton GE, Deoras A (2014) Application of deep belief networks for
natural language understanding. IEEE/ACM Trans Audio Speech Language Process
22(4):778-784

Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw
61:85-117

Singh CD, He B, Fermiiller C, Metzler C, Aloimonos Y (2024) Minimal perception:
enabling autonomy in resource-constrained robots. Front Rob AI 11:1431826

Sutton R, Barto A (2018) Reinforcement learning: an introduction, 2nd edn. MIT
Press, Cambridge

Tokunaga S, Premachandra C, Premachandra HWH, Kawanaka H, Sumathipala S,
Sudantha BS (2021) Autonomous spiral motion by a small-type robot on an obstacle-
available surface. Micromachines 12(4):375

Vaswani A et al (2017) Attention is all you need. In: The conference on neural
information processing systems (NIPS)

Vedaldi A, Lenc K (2015) MatConvNet: convolutional neural networks for MATLAB.
In: ACM international conference on multimedia, pp 689-692

Veit A, Wilber M]J, Belongie S (2016) Residual networks behave like ensembles of
relatively shallow networks. In: Advances in neural information processing systems,
pp 550-558

Wang H (2018) Real-time face detection and recognition based on deep learning.
Master’s Thesis, Auckland University of Technology

Wang H, Yan W (2022) Face detection and recognition from distance based on deep
learning. In: Aiding forensic investigation through deep learning and machine
learning. IGI Global, Hershey

Webb S (2018) Deep learning for biology. Nature 554:555-557
Weiss G (2013) Multiagent systems, 2nd edn. MIT Press, Cambridge, MA

Xia Y, Nguyen M, Yan W (2023) Kiwifruit counting using KiwiDetector and
KiwiTracker. In: Intelligent systems, pp 629-640

Xiao B, Nguyen M, Yan W (2023) Apple ripeness identification from digital images
using transformer. Multimedia Tools Appl 83:7811-7825

Xiao B, Nguyen M, Yan W (2023) Fruit ripeness identification using transformers.
Appl Intell 53:22488-22499

Xing J, Yan W (2021) Traffic sign recognition using guided image filtering. In:
Springer ISGV. Springer, Cham, pp 85-99

Yan W (2019) Introduction to intelligent surveillance: surveillance data capture,
transmission, and analytics, 3rd edn. Springer, Berlin

Yan W (2023) Computational methods for deep learning: theory, algorithms, and
implementations, 2nd edn. Springer, Berlin

88.

89.

90.

91.

92.

93.

94.

95.

96.

Yan W, Kankanhalli M (2002) Detection and removal of lighting & shaking artifacts in
home videos. In: ACM international conference on multimedia, pp 107-116

Yan W, Kankanhalli M (2009) Cross-modal approach for Karaoke artefacts correction.
In: Handbook of multimedia for digital entertainment and arts, pp 197-218

Yan W, Qi D (1999) Many-knot spline interpolating curves and their applications in
font design. Comput Aided Draft Design Manuf 9(1):1-8
[MathSciNet]

Yan W, Ding W, Qi D (2001) Rational many-knot spline interpolating curves and
surfaces.] Image Graph 6(6):568-572

Yin S, Fu C, Zhao S, Li K, Sun X, Xu T, Chen E (2024) A survey on multimodal large
language models. Natl Sci Rev 11:nwae403

Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern
Analy Mach Intell 21(11):1330-1334

Zhao H, Xu S, Yan W, Xu D (2025) Design and optimization of target detection and 3D
localization models for intelligent muskmelon pollination robots. Horticulturae
11(8):905

Zheng A, Yan W (2024) Attention-based multimodal fusion model for breast cancer
prediction. In: ICONIP

Zhu'Y, Yan W (2022) Traffic sign recognition based on deep learning. Multimedia
Tools Appl 81:17779-17791

http://www.ams.org/mathscinet-getitem?mr=2314693

© The Author(s), under exclusive license to Springer Nature Singapore Pte

Ltd. 2026

W. Q. Yan, Robotic Vision, Advances in Computer Vision and Pattern Recognition
https://doi.org/10.1007/978-981-95-4360-1_2

2. Robotics

Wei Qi Yan!

(1) Department of Computer and Information Sciences,
Auckland University of Technology, Auckland, New
Zealand

Abstract

In this chapter, a variety of robots and their operations will be
detailed. This includes mobile robots and humanoid robots as
well as robotic navigation and localization. Correspondingly,
MATLAB automatic driving toolbox will be illustrated. Our
goal is to equip cameras on mobile robots and acquire the
dynamic images reflecting the scene. In this chapter, a
variety of robots such as arm-type robots, robotic kinetics,
robotic dynamics, and robotic control are taken into account.
The significance of this chapter is that the problems of robotic
control are resolved by using the available visual information
and knowledge. The manipulator and the end-effector(s) of
robots are controlled within 3D space.

2.1 Mobile Vehicles

Mobile robots are a class of automobile machines, and they
are able to move through the designated space [20]. The
robots will select the best path [26, 28] to reach its
destination, and it may encounter challenges such as
obstacles that might block its way or having an incomplete
map or no map at all [68]. The necessary maps will be
dynamically created or updated when the environment

https://doi.org/10.1007/978-981-95-4360-1_2

changes. The generated maps will be applied to direct the
robots where to go. One straightforward strategy is to have
simplified perception of the world and react to what is
sensed.

Sensing means we make active use of sensors. Once the
robots with sensors move from side to side, it quickly
acquires information about its surroundings. That is the way
how robots acquire the environmental information. An
alternative way is to create a map of its environment and plan
a path from the starting point to the destination. This space
will be scanned with SLAM algorithm (i.e., Simultaneous
Localization and Mapping [52, 58]). Based on the map with
scene understanding, a path is needed to be planned. Thus,
we choose which path is the best and the shortest one for the
robot to reach the destination.

The free-range mobile robots and wheeled robots typically
make use of the fixed infrastructure for guidance, such as
bicycle. Bicycles have pedal and handlebar basically as shown
in Fig. 2.1. Generally, the robot’s velocity is controlled like a
bicycle to be proportional to the distance from the point

(z,v) € R? to the goal (z*,y*) € R?,

Saddle Handlebar

Wheel

Fig. 2.1 A bike and the forces to the ground in red arrows

vt = Kv\/(ﬂ?* —z)’+ (y* -y’ Ky e Rv*eR (21

With the relative angle,

6* =tan~' (L=L),6* ¢ R (2.2)
By using a proportional controller as shown in Fig. 2.2,
vy=Kp@*—-0),0<Kpe R,yER (2.3)

where K, and K} are the constants.

-~ -

Fig. 2.2 A proportional controller and its radii

Most people have the experience of riding a bicycle or
know how it operates. The pedals of a bike are the source
where the power is from. The handlebar is adapted to control
where the direction will be. While moving slowly, the
handlebar of bike should have an angle to support the
moving. Especially, the direction is altered. At this time, the
handlebar and the pedals should keep the angle. Given a fixed
angle, the bicycle will remain the balance and keep going
further. Hence, the unmanned bicycle was designed and
implemented, and the bicycle can be run automatically. The
gyroscope is installed on the robot to keep the balance and
direction. If the bicycle is working in the proper direction, it
can be driven smoothly and stably. Thus, the bike is possible

to be controlled remotely, and batteries will provide energy
and power. A simple proportional controller turns the
steering wheel so as to drive the robot toward the destination.
The proportional controller adjusts the steering angle, which
drives the robot following the straight line:

ag=—-K;-d,0< Kg€ R (2.4)
where K, is a constant.
_ (a,b,c)-(w,y,l)T 2 2
d= N +b°#0,deR (2.5)

This proportional controller is distinct from the mechanical
system of bicycle. Basically, a bicycle has two wheels: one is
in front, and the other is at the back. But for this pair of
controllers, which has four wheels, if the direction is changed,
the four wheels will be turned in various directions. Hence,
mobile robots follow the two radii. Following a straight line,
two controllers are required to adjust the steering. One
controller steers the robot to minimize the robot’s normal
distance from the straight line. Two controllers are required
to adjust steering. One controller steered the robots to keep
the balance and distance from the straight line. This trailer
will be operated and run along the straight line [42]. The
second controller adjusts the heading angle or orientation
and controls the vehicle to be parallel to the straight line. The
two controllers must jointly work together and control the
robots to move forward. But the problem is how to make use
of computers to guide robots from the starting point to the
end point.

ar +by+c=0 (2.6)
where a, b, c € R are constants.
6* =tan ! (—%),a #0,0 € R (2.7)

The Ackermann steering geometry [34] is a geometric
arrangement of linkages in the steering of a car or other
vehicles designed to solve the problem of wheels on inside
and outside of a turn needing to trace out circles of different
radii. Exact Ackermann geometry is only valid at low speeds
or tight turns. At high speeds, tire slip angles must be

considered; therefore, approximate Ackermann geometry or
dynamic steering models are employed.

2.2 Humanoid Robots

A humanoid robot as shown in Fig. 2.3 is a robot resembling
human body in shape. In general, humanoid robots have a
torso as shown in Fig. 2.4, including a head, two arms, and
two legs, though a few humanoid robots may replicate only a
part of human body. Androids are humanoid robots to
aesthetically resemble humans. A few robots have wheels,
and the feet are wheeled [80]. A logo of Android mobile
system is a robot. The android, the original name or original
meaning refers to a robot.

Fig. 2.3 A humanoid robot

Arm

Pelvis

Fig. 2.4 A torso of human body and its joints

Sensors sense the position, orientation, and speed of
humanoid’s body and joints, along with internal values.
Actuators are the motors responsible for motion in robots. In
robots, most of the joints are equipped with motors. The
motors take advantage of torque to control arms, allowing
them to raise or lower, so do the legs. For example, if we hold
a weighty object on air, a group of motors is working together
to keep pose of the object. By using motors, the controller
gives a force to control the pose, which is called payload. In
robots, the motors control the position and orientation of an
arm. In total, a torso has 24 degrees of freedom (DoF) after
added all dimensions of axes together. Pertaining to the
number of axes, a torso has multiple rotational axes and
translational axes. If a computer is employed for controlling
robots, the motors in each joint should be exactly controlled
for rotational and translational operations.

Google MediaPipe is a computer vision software that is
able to capture 33 key points of human body as shown in Fig.
2.5. Our human body includes head, arms, legs, and feet

before a camera, and the 33 points could be detected in real
time [16, 23, 74, 76]. Correspondingly, the angles between
any two links could be utilized to control the torso of robots.
Hence, we take use of these features for robotic control via
human pose detection and recognition. Therefore, the key
issue is how to automatically map these points to a humanoid
robot so as to save our operating time. The robotic vision
should have the ability to resolve this mapping problem
through robot operating system (ROS) and visual servoing.

Fig. 2.5 An example of Google MediaPipe software for capturing human pose

2.3 Navigation

2.3.1 Automata

A robot is a goal-oriented machine that is able to sense, plan,
and act, like insects [46]. Insects, such as moth, butterfly, and
bird, follow Charles Darwin’s theory of evolution. Particularly
in winter time, birds usually fly to the north because the north
in the southern hemisphere is warm [29] and vice versa. This
movement is triggered by factors like changing day length,
temperature, and food availability. Birds fully take advantage
of a plethora of cues to navigate, including the Sun, the
Moon, stars, the Earth’s magnetic field, and landmarks.
Robots are inspired and learned from this bird migration or
seasonal movements. The simple class of robots is known as
Brandenburg robots. That is a class of goal-oriented robots,
and they are characterized by using direct connections
between sensors and motors.

When light rays are emitted from the Sun or the Moon and
when human moves from one place to another at night, the
location of the Moon or stars in sky is utilized for positioning.
Most of insects also need position of the Moon in night. While
the insects are moving toward the destination, they always
retain and withhold the angle toward the direction of light
rays like moths. Hence, the path is called moth curve [73]
(Fig. 2.6).

Fig. 2.6 A moth would like to fly along a curve that is perpendicular to ray
direction; thus, it is called moth curve. A Braitenberg robot is to move along the
moth curve

Because robots need take actions, they have their own
behaviors. The behavioral robots essentially are automata
[12]. In computer science, automaton is called Finite State
Machine (FSM). The automata [32] is a system which serves
us well. For example, the simple automaton is a computer
operating system, like Microsoft Windows, Linux, or MacOS.
In computer control or machine intelligence, the automata
are always needed. The reason why the robot is much
intelligent is that automaton is smart, and it simply reacts to
the actions within the environment. A simple automaton
shares the ability to sense when they are in proximity to an
obstacle. The automaton [32] includes an FSM and other
logic between sensors and motors. The simple robot performs
goal seeking in the presence of non-drivable areas or
obstacles [68].

Initially, robots do not know the environment well, but
after iterative interactions, they acquire the lore from
environment and understand the surroundings; they gradually
become familiar with the scene. If robots deeply understand
logical relationships in the scene, the robots cannot move
from one place to another due to the existing obstacles.
Hence, robots have the ability to avoid obstacles [11]. If
robots understand the updated maps well, they move toward
the correct direction. Automata have memory, and a robot is
able to be operated in correct way like the automata.

The central issue of robot navigation is path planning [44].
If such a map is available, robots need to make a reasonable
plan of how to leave current place or how to return starting
place. The key to achieve the best path is to explore this map.
The Google map for navigation needs the starting point in a
plan to get the destination. The best way is to have a Google
map, which instructs us the orientation of roads, traffic
congestion, bridges, obstacles, etc.

A simple and computer-friendly representation is the
occupancy grid [24]; the memory is required to hold the

occupancy. We segment a map into regions. The memory is
required, which stores the grids. The robot is operated in a
grid world which occupies one grid cell. The robot does not
have any non-holonomic constraints that can move to any
neighboring grid cells each time. It is able to determine the
position of a robot on the plane. The robot is able to compute
the path it will take. The holonomic way of robots is based on
global view. A sophisticated planner might consider
kinematics and dynamics of a robot and avoid paths that
involve turns. In a map, the derivable regions or obstacles are
presented as polygons, comprising a list of vertices or edges.
This is potentially a compact format, but determining
potential collisions between robots and obstacles [68]. This
navigation algorithm has exploited its global view of the
world, through exhaustive computations so as to find the
shortest path. Like riding bus or train, we need to pay the
fare within one zone as shown in Fig. 2.7. The robot does not
have any holistic constraints to arrive any neighboring grid
cells. That is the reason why robots need to understand the
scene so that the robots can travel from one cell to another.

......

Heights

<<<<<<

Fig. 2.7 A bus and train fare zone
In a plan, if a robot already occupies one place or cell, the
robot is able to follow the map and compute the path it will

follow. This is called holistic plan. A robot can proceed
moving from any places to where it decides to go by following
instructions, and the navigation algorithm has explored global
view of this world. If a robot would like to seek the shortest
path by using a map, the map keeps offering optimal solutions
for the robot. The traffic on the dynamic map is being
updated in real time. Robots have the ability to quickly find
the states of the planned roads [51]. The best part of this
algorithm is the computational cost from the starting point to
the destination. The cost is the crucial factor for making
holistic decision for a robot.

A fairly complex planning problem has been converted into
one that can be handled by using a Braitenberg-class robot.
This makes local decisions based on the distance to the goal
[44]. Brandenburg robot is an elemental one; a local decision
is needed to make. A robot thus needs to think of the
neighbors and reach to the next grid cell. The penalty for
achieving the optimal path is the computational cost. The
roadmap methods provide an effective means to find the
paths in large maps that greatly reduce computational costs.
Suppose a robot has a slew of ways to leave, firstly it needs to
make local decision. The mobile robots have equipped with
feet or wheels. Along with the well-designed direction, the
robot can quickly attain the destination [15].

2.3.2 D* Algorithm

D* algorithm (pronounced “D star”) was designed for
resolving path planning problems [31, 66], where a robot will
be navigated to the given destination in unknown terrain [62].
D* algorithm and its variants have been widely employed for
mobile robot and autonomous vehicle navigation [42]. The
algorithm supports computationally cheap and incremental
replanning ways for small changes in a map [63]. It
generalizes the occupancy grid to a cost map, and the map
represents the cost of traversing each cell in the horizontal or
vertical direction [24].

Algorithm 2: D* path planning algorithm

Input: Start node s,74,+, Goal node 5404, Grid map with initial cost
estimates
Output: Path from g4 10 Sgoar
1 Initialize open list with sgoq/:
2 Set g(Sgoar) < 0, rhs(sgoar) < 0;
3 foreach state s # 54041 doO
L g(s) < oo, rhs(s) < oo;

=

wm

ComputeKey(sgoal):
6 while open list is not empty and (key(sgiari) > key(top) or
rhs(Ssrart) # g(s.s‘mrr)) do

7 § < state with smallest key in open list;
if g(s) > rhs(s) then

9 2(s) <« rhs(s);

10 remove s from open list;

11 foreach predecessor s’ of s do

12 L Update Vertex(s');
13 else

14 g(s) <« o0;

15 foreach predecessor s" of s and s itself do
16 L Update Vertex(s'):

17 Function UpdateVertex(s):
18 if s # 5404/ then

19 L rhs(s) < mingcsyees) (€87 + ¢(s,57);

20 remove s from open list;

21 if ¢(s) # rhs(s) then

22 L insert s into open list with key ComputeKey(s);
23 Function ComputeKey(s):

24 L return [min(g(s), rhs(s)) + h(Sgrare,), min(g(s), rhs(s))|:

D* algorithm was designed for planning with a minor change
[44]. If the given map has a puny change, the robot can
quickly react to the change. This is a responsible way to
minimize the total cost of a travel. The algorithm supports
incremental replanning. That means it is possible to have a

new plan because of environmental changes. D* algorithm
allows updates to the map at any time, while a robot is
moving. After replanning, the robot simply positions to an
adjacent cell with the lowest cost which ensures the
continuity of motions. The pseudocode is shown in Algorithm
2. While a robot is shifting, the map will be dynamically
updated as we are driving a car using Google road map.

Google road map will automatically present the dynamic
routine path for a driver. Similarly, if a robot deviates to a
wrong way, the navigation map could quickly check the
routine; if the robot averts somewhere nearby, the map can
quickly guide the bot to go back. After replanning, the bot
simply adjusts the cell with the lowest cost, which ensures
that the continuity holds even if the plan has been changed.
The plan change will not impact the final destination. Thus,
the cost should be reduced as much as possible.

2.3.3 Voronoi Diagram

In mathematics, a Voronoi diagram is a partition of a plane
into regions close to each of a given set of objects [10]. The
map is segmented into multiple regions. Subsequently, a
robot needs to decide where the best direction is and how the
bot will move to the next region in the created Voronoi
roadmap. In MATLAB, a Voronoi diagram is based on distance
to a specific set of points. An example of Voronoi diagram is
shown in Fig. 2.8.

4 3 2 1 0 1 2 3 4
Fig. 2.8 An example of Voronoi diagram and Delaunay triangulation

The skeleton of this free space is a network of adjacent
cells, no more than one cell thick. The skeleton is a free
space, indicated by using white cells. The white markers show
that the skeleton of free space is networked. The skeleton
with obstacles is overlaid in red, and the junction points are
marked in blue. Regarding the distance of obstacles, pixel
values correspond to the distance of the nearest obstacle.
Usually, the Voronoi diagram is triangle-based. Because the
triangle is basic, once all of them are obtained, the centers
are connected together. Thus, a graph is created. The graph
basically shows the information of links. The roadmap with
junctions will be marked in blue. If a region has an obstacle, it
is marked in red. If there is a junction between two regions, it
is marked in blue. Regarding the distance between the two
regions, the Voronoi diagram can save calculations. For
calculating the distance, norms Lg, Ly, Ly, L, and L, are

employed for a vector V. More generally, we have p-norm in
functional analysis

IV = (Zl w?) (2.8)

where x; € R,1 =1,2,...,n € R is the component of an n-
dimensional vector V, p =0,1,2,3,...,00. Most of the time,
we make use of norms Lo (Euclidean distance), which
indicate the distance from one place to another as shown in

Eq. (2.9).
| 'V ||o= (ZH wg) (2.9)

An interesting distance is Manhattan distance which is
block-based. Manhattan distance, Taxicab distance, or block
distance is an (L) metric applied to determine the distance
between two points in a grid-like path [47] as shown in Eq.

(2.10).
IV =) . lal. 210

An example of Voronoi-based robot path planning [21] is
shown in Algorithm (3), the corresponding result is shown in
Fig. 2.9.

Voronoi Diagram for Robot Navigation

10
® Obstacles
8 -
6 @
o
f"\\\
-
4 i %
l ~
~
/ K
[} h 9
’ “
= ; N
7
I /
! /I
[
’
I
[} //
2 7 & 7
’
/ 7/
I ’
J" /,’
! ¥ ®
’
/ I
I ,/
I
1 /,
0 T L lf T T
0 2 4 6 8 10
X

Fig. 2.9 An example of Voronoi-based path planning in Python. The dash line in

green shows the path for robot navigation

Algorithm 3: Voronoi-based robot path planning

W N =

~N & U e

Input: Set of obstacle points O = {01, 02, ..., 0,}, start point s, goal point
8

Output: Path from s to g avoiding obstacles

Compute Voronoi diagram V from obstacle points O

Extract finite Voronoi edges £ from V

Add s and g to the diagram as additional nodes

Connect s and g to nearest Voronoi vertices or edges

Construct a graph G = (V, E) from Voronoi edges and added connections

Use Dijkstra’s or A* algorithm to find shortest path from s to g in G

return Safe path from s to ¢ along Voronoi edges

2.3.4 PRM: Probability-Based Method

A probabilistic roadmap (PRM) [36] is a network of possible
paths in a given roadmap based on free and occupied spaces.
This probability-based method reduces computational costs
by using probability sampling. Sampling means only a portion
of samples are selected randomly.

The PRM algorithm takes advantage of a network of
connected nodes to find an obstacle-free path from a starting
point to the end. Increasing the nodes allows for more direct
and correct path but adds more computational time or
execution time. Because of the random placement of points,
the path is not always direct or efficient. Using a small
number of nodes can make paths worse and restricts the
ability to find a complete path. The advantage of PRM is that
a few of relative points need to be tested to affirm that the
points and the paths between them are obstacle free. Each
edge of the graph has an associated cost which is the distance
between the two nodes. The color of a node indicates which
component it belongs to and which component is assigned a
unique color. The pseudocode of PRM algorithm is shown in
Algorithm 4.

Algorithm 4: Probabilistic roadmap (PRM) for robot
navigation

Input: Start state ggar, goal state geoa1, number of samples N
Output: Path from gyt t0 Gooul

Learning Phase (Roadmap Construction):

Initialize empty graph G = (V. E);

fori =1t N do

Sample a random collision-free configuration ¢anq;

V <« V Ul{qrand}:

foreach neighbor ¢, eqr in k nearest neighbors of qrang in V do
L it Path{(q,and, Gnear) 15 collision-free then

w N =

= B =LY | B °N

L E < E U {(grand> gnear) };

9 Query Phase:
10 Add gstare and ggoal to V5
11 Connect ggare and ggoq) to nearest neighbors using same method as above;
12 Use Dijkstra’s or A* to find a path from gsar t0 ggoal In G
13 if a valid path is found then
14 L return path;
15 else
16 L return failure (no path found);

Traversal across the roadmap involves searching toward the
neighboring node which has the lowest cost, which is the
closest to the goal. The process is repeated till the node in a
graph closest to the goal is reached. The important trade-off
in achieving computational efficiency is to use random
sampling. Each graph has an associated cost. The color node
indicates which component it belongs to. If the distance from
two different places is calculated, the planner can select
samples and create a network consisting of disjoints.

The underlying random sampling of free space means that
a distinct graph is created each time, while the planner is
being started up, resulting in various paths and lengths. The
planner can fail by creating a network consisting of disjoint
components. The long narrow gaps between the obstacles are
unlikely to be exploited because the probability of randomly

chosen points that lie along the gaps is extremely low. We
need multiple samples along these long narrow gaps.

MATLAB provides an example for PRM algorithm as shown
in Fig. 2.10. In MATLAB, a probabilistic roadmap (PRM) is a
network graph of possible paths in a given map based on free
and occupied spaces. The algorithm takes advantage of the
network with the connected nodes to find an obstacle-free
path from the start to an end location. In this MATLAB
example, a small number of nodes are created in roadmap.
Increasing the number of nodes will enhance the efficiency of
path by giving more feasible paths. The PRM algorithm
recalculates the node placement and generates a new
network of nodes.

Probabilistic Roadmap

Y [meters]

X [meters]

Fig. 2.10 An example of PRM algorithm

2.3.5 RRT: Rapid-Exploring Random Tree

Another algorithm for this map planning is to rapid-exploring
random tree (RRT) [1]. The RRT algorithm easily deals with
various obstacles and differential constraints. Compared with
other algorithms, RRT method works fast, which has less cost.
This is feasible to control orientation of a robot, where it is
positioned [35]. The pseudocode is shown in Algorithm 5. If
we start seeking the initial parameters, this is computed with
the inputs that move the robot from the existing points to
others. Given a starting point, robots quickly walk along the
map to get another point. This is a repeated process with
multiple attempts, and the inputs with the best performance
are chosen.

Algorithm 5: Rapidly exploring random tree (RRT)
Input: Start state x4, Goal region .2,,;, Obstacle space .2,
Maximum iterations N

Output: Path from xg,,; to goal, if found
Initialize tree T with root node x4,
fori < 1to N do
Sample random state x,,,g from 2~
Xnearest <— Nearest neighbor to X,qug In T
Xnew < Slccr(}fn('(li'e.\'l v Xrand)
if ObstacleFree(Xyeqrest» Xnew) then

Add x,6y to T with an edge from X075

if X000 € 2 g0a then

L return Path from X/, 1O Xpew

ST (ST

[NV -"- I = L | B SN

10 return Failure: No path found within N iterations

The RRT algorithm is computed for the model with a velocity,
steering angle, integration period, and initial configuration.
The algorithm is to compute the control input that moves the
robot from an existing point in the graph. The RRT algorithm
makes use of a kinematic model to create paths that are
feasible to move. The algorithm takes into account of the
orientation of the robot and its position. An example is shown
in Fig. 2.11. The random number generator is reset to ensure

reproducible results. The path is planned from the starting
point to the destination.

Occupancy Grid

s OigiNAl path
s shortened path

Y [meters]

X [meters]

Fig. 2.11 An example of RRT algorithm

2.3.6 Dead Reckoning

In navigation, dead reckoning is the process of calculating the
current position of a moving object by using a previously
determined position and incorporating estimates of speed,
heading angles (or direction or course), and elapsed time.
The estimation of current ship location is based on previous
speed, direction, and time of travel, in case a ship misses its
direction during voyage on sea [56].

Location estimation by using dead reckoning is based on
robot position and the estimated distance traveled. Sectioning
is the way of estimation of position by measuring the bearing
angles of known landmarks. Triangulation (surveying) is the
estimation of position by measuring the bearing angles to the

unknown point from each of the landmarks [19]. Figure 2.12
shows triangulation for surveying calculation. When a ship
passed location points A, B, and C, we are able to calculate
the distance h from the object point O to the directed straight

line AC.

I=11+1 (2.11)
where [,11,lo € R
tan (o) = %,ll + 0 (2.12)
tan (8) = 1,15 # 0 (2.13)
l= (ij((fj)) + Z?S&?) = hsi? ot a £ 0,840, (2.14)
__ 7 sin(e)sin(B)
h =1 sin(a+03) (2.15)
0
' h
& 2 ? C

Fig. 2.12 A triangulation for surveying

In computer science, dead reckoning refers to navigating
an array of data by using indexes based on location.
Computer vision is employed to visual odometry with
observations of the world. Most platforms have proprietary
motion control systems that accept motion commands from
users (speed and direction) and report odometry information.
An odometer is a sensor that is able to measure the distance
traveled, typically by measuring the angular rotation of robot
wheels. The direction of traveling can be measured by using
an electronic compass, and the change in heading angles can
be calculated by using a gyroscope or differential odometry.

Originally, dead reckoning is a method to estimate location
that is for the ship voyage. The dead reckoning is an

estimation based on a coastline to speed up the action at
time. From a voyage perspective, previously estimated GPS
signals are not reliable. GPS signals are extremely weak
sometimes which can lead to jam. Suppose a ship is traveling
along seashore, the ship captain needs to calculate the
distance from the reckon. Given a fixed distance, the captain
should keep the bearing angle. Thus, the ship will make an
excursion and cannot loss its way.
The dead reckoning calculates the new position

(z/,y) € R? by using the current position (z,y) € R?, velocity
v, heading angle 0, and time step At. This assumes the robot
moves in a straight line with a constant speed and direction.
The pseudoscope for dead reckoning algorithm is shown in
Algorithm 6. The code in Python and the corresponding
results are shown in Figs. 2.13 and 2.14.

{wl = x + v- cos (0) At

yl =y + v- cos () At
where z,y, z/, y!, 0, At € R.

(2.106)

Example usage

if __name__ == "__main_ ":
initial_pose = (0.0, 0.0, 0.0) # Start at origin, facing right (@ radians)
delta_t = 0.1 # 100 ms time step
steps = 100

Simulate constant forward motion with slight right turn
velocities = [(1.0, 0.1) for _ in range(steps)]

trajectory = dead_reckoning(initial_pose, velocities, delta_t)

Plotting the trajectory

x_vals = [pose[@] for pose in trajectory]
y_vals = [pose[l] for pose in trajectory]
plt.figure()

plt.plot(x_vals, y_vals, label="Dead Reckoning Path")
plt.scatter(x_vals[@], y_vals[@], color='green', label="Start")
plt.scatter(x_vals[-1], y_vals[-1], color='red', label="End")
plt.title("Dead Reckoning Trajectory")

plt.xlabel("X Position")

plt.ylabel("Y Position")

plt.axis('equal')

plt.legend()

plt.grid(True)

plt.show()

Fig. 2.13 The code in Python for dead reckoning algorithm

Dead Reckoning Trajectory

—— Dead Reckoning Path
54 @ Start
® End

Y Position

I 1 I

0 2 4 6
X Position

Fig. 2.14 The results of dead reckoning algorithm in Python

Algorithm 6: Dead reckoning for robot localization

Input: Initial position (xg, yp), initial orientation 6y, velocity v, angular
velocity e, time step Az, number of steps N
Output: Estimated trajectory {(x;, y;, QI)}fV:O
1 Initialize: x < xp, y < yp, 0 < 6
2 Store initial state (x, y, 0)
Jfort < 1to Ndo
4 X «<—x+4v-cos(f)- At
5 vy < y+uv-sin(f) - At
6 0 «—0+w- At
7 Store state (x, y, d)

8 return trajectory {(x;, y;, 6;)}

2.4 Mathematics Background

Kalman filtering [77] is an iterative algorithm that updates, at
each time step, the optimal estimate of the unknown true
configuration and the uncertainty associated with that
estimate based on the previous estimate and noisy
measurement. Pertaining to Kalman filtering [33, 41], the
signals follow zero mean. That means the optimality of
Kalman filter algorithm regards that errors have a normal
(Gaussian) distribution.

Kalman filtering is an iterative algorithm, which keeps
updating and what each step estimate is known. The state is
associated with previous states and noise measurements. The
next is that how it can be implemented based on previous
steps [41]. Kalman filtering allows data from various sensors
to update the state [82]. Kalman filtering provides the best
estimate of where robots are. A map of locations is created,
while the robot is in its expedition with landmarks. A state
vector comprises estimated coordinates of the landmarks that

have been observed as X. The corresponding estimated
covariance is P

P (k|k) = cov[x(k) — %(k|k)] (2.17)
and
P(k|k—1) = cov[x(k) — X(k|k—1)] (2.18)
The prediction equation is
2(k + 1|k) + %(k|k) (2.19)
While the covariance matrix is
P(k+ 1|k) « P(k|k) (2.20)
the updated state estimate is
X(k+ 1k +1) < x(k + 1|k) (2.21)
and
Pk+1lk+1) < P(k+ 1|k) (2.22)
The invariant of expectation is
E[x(k) — %(k|k)] = E[x(k) — R(k|k—1)] = 0 (2.23)

That means all estimates have a mean error of zero. This
process is called prediction. Given k—1 step, the state vector

is expressed as what it was estimated, the coordinates of
landmarks have been observed. The corresponding estimates
are called covariance. The covariance is square root sum. The
prediction equation is like this; one gets x;;. We predict
Xg+1|k- The coherence matrix will be calculated
correspondingly. We update the states by using xx 111,
given x, 41 to get this X k+1lk+1- Meanwhile, this prediction is
the covariance matrix which has been updated. The means of
the expectation of x|, and expectation of x;, 1 are all zero.
This expectation is the sum that all the variables are added
together and divided by using number k, namely the average.
Given the signals with noise, after Kalman filtering, the
signals usually have not so many changes. Figure 2.15 is an
example of Kalman filtering in 1D by using Python coding.
The Python code is shown in Fig. 2.16. If the algorithm is
simplified, the algorithm is able to be written by using
pseudocode as shown in Algorithm 7.

1D Kalman Filter

14 —— True Position
-== Measurements
—— Kalman Filter Estimate
12 -
\ "
,}\ l,\\.‘ ,’ |
M vy)
10 - | [T 1
. \ ll] ll‘ i
5 J 11y v ,'\
= ! 1y 1))
w ’ " || " -1
£ 8- Iy y—
u '
]
6 -
4 -
0 10 20 30 40 50

Time Step

Fig. 2.15 The implementation of Kalman filtering algorithm

Parameters
true_position = 10
initial_state = @
initial_covariance = 1
process_variance = le-5
measurement_variance = 2
num_steps = 50

Run the Kalman filter simulation
true_positions, measurements, estimates = simulate_kalman_filter(
true_position, initial_state, initial_covariance, process_variance, measurement_variance, num_steps)

Plot the results

plt.plot(true_positions, label='True Position', color='g')
plt.plot(measurements, label='Measurements', linestyle='
plt.plot(estimates, label='Kalman Filter Estimate', colo
plt.xlabel('Time Step')

plt.ylabel('Position')

plt.legend()

plt.grid(True)

plt.title('1D Kalman Filter')

plt.show()

, colar='r")
b'}

Example: 10 Kalman filter for tracking a constant position with noise
def simulate_kalman_filter(true_position, initial_state, initial_covariance, process_variance, measurement_variance, num_steps):
kalman_filter = KalmanFilter(initial_state, initial_covariance, process_variance, measurement_variance)

Simulate noisy measurements and apply the Kalman Filter
estimates = []

measurements = []

true_positions = []

for step in range(num_steps):
Simulate the true position (constant)
true_pos = true_position
true_positions.append(true_pos)

Simulate a noisy measurement
measurement = true_pos + np.random.normal(@, np.sqrt(measurement_variance))
measurements.append(measurement)

Kalman filter predict and update
kalman_filter.predict()
kalman_filter.update(measurement)

Record the state estimate
estimates.append(kalman_filter.get_state())

return true_positions, measurements, estimates

[3] import numpy as np
import matplotlib.pyplot as plt

class KalmanFilter:
def __init__ (self, initial_state, initial_covariance, process_variance, measurement_variance):

self.x = initial_state # initial state estimate

self.P = initial_covariance # initial covariance estimate
self.Q = process_variance # process variance

self.R = measurement_variance # measurement variance

def predict(self):
Prediction step (state prediction and covariance prediction)
self.P = self.P + self.Q # Increase uncertainty with process variance

def update(self, measurement):
Kalman Gain
K = self.P / (self.P + self.R)

Update step (state update and covariance update)
self.x = self.x + K * (measurement = self.x) # Correct the prediction with measurement
self.P = (1 - K) *x self.P # Update the covariance

def get_state(self):
return self.x

Fig. 2.16 The code in Python for implementing Kalman filtering algorithm

Algorithm 7: Kalman filtering algorithm (pseudocode)
Input: Initial state estimate X, initial covariance P
State transition model F, control model B, control input u
Observation model H, process noise covariance (), measurement noise
covariance R
Measurements {z;} forr=1... N
Output: State estimates {x,} and covariances { P, }
Initialize: x < X0, P < Py
forr < 1to N do
Prediction Step:
X <« F-x4+B-u
P <« F-P-Fl +0
Update Step:
K<«~pP -H' (H-P~-H" +R)"! // Kalman Gain
X< X" +K-(z;, —H -x7)
P~ (I—-—K H)-P™
10 Store (x, P)

(ST S

=

o e 3 & W

11 return {%,, P,}

2.5 Robot Arm Kinematics

Given a robot, the robot is navigated to the destination with a
well-planned path [26, 62]. The joints of a robot inherently
stand on its body [46]. If there is a bottle on table, the camera
installed on the arm needs to find where the bottle is. The
end-effector will grasp this bottle and pick up the bottle and
then place to another location. Hence, the robot can pick and
place the bottle from one place to another. This operation is
within robot’s payload. A small robot showcases the effects
for cooking and cleaning in 3D space. Because the given
space is limited, the robot is able to use its end-effector for
food security and safety [3-8]. The arm-type robots or robot
manipulators have a static base and therefore are possible to
be operated within the workspace. Usually, the robot will be
enclosed within a forbidden fence. As we know, the premise is
called work envelop (Fig. 2.17).

Fig. 2.17 A wheeled robot is within the “envelop”

A robot manipulates objects by using its end-effector. We
make use of end-effector to find visual object and move
objects [37, 72]. A serial-link manipulator comprises a chain
of mechanical links and joints. Our human arm is working as
a joint chain. Each joint can move its outward neighboring
link with respect to its inward neighbor. One end of the chain,
the base, is generally fixed, and the other is free to move in
the space and holds a tool as the end-effector. A serial-link
manipulator comprises a set of bodies, called links, in a chain
and connected by joints [20]. Each joint has one degree of
freedom (DoF) [53], either translational joint (a sliding joint
or prismatic joint) or rotational joint (a revolute joint). The
motion of a joint alters the relative angle or position of its
neighboring links [19]. The joints of most robots are revolute
because we have motors inside to take effects. Meanwhile,
the prismatic joint is moving along the straight line.

Between two joints, there is a link. A link is considered as
a rigid body that defines the spatial relationship between two
neighboring joints. The link can be specified by two
parameters: length and twist. The link offset is the distance
from one link coordinate frame to the next along an axis of
the joint. The joint angle is the rotation of one link with
respect to the next joint. The truly useful robots have a task
space enabling arbitrary position and attitude of the end-
effector. Hereinafter, the attitude refers to orientation. The
task space has six spatial degrees of freedom (DoF): three
translational and three rotational. At present, this 3+3 DoF is
the standard configuration.

In robotics, robotic kinematics applies geometry to the
movement of multi-DoF kinematic chains that form the
structure of robotic systems. Robotic kinematics offers force
to kinematic chains. The force is governed by Newton’s
second law of motion. The relationship between the
dimensions, connectivity of kinematic chains, the position,
velocity, and acceleration of each link in the robotic system.
Robotic kinematics is explored and exploded (EE), in order to
plan and control movement and to compute actuator forces
and torques. The actuator is the “muscle” of robots. There are
two broad classes of robots: serial manipulators and parallel
manipulators. The time derivative of the kinematics yields
Jacobian matrix of robots, which relates to linear velocity and
angular velocity of the end-effector [20].

on oh .. oh
0, Oz, oz,
oh 9 .. of
03:1 82172 awn
Jr= (2.24)
Ofm Ofm ... Ofn
0, 0z, ox,

where Jr is the Jacobian matrix, and 27]2 is the gradient of
function f;,7 = 1,2,...,m, with j-th gradient

z;,7=1,2,...,n.

The forward kinematics (FK) is often expressed in
functional form with the end-effector pose as a function of
joint coordinates. The kinematics can be computed for any
serial-link manipulator irrespective of the number of joints or
the types of joints. The simple two-link robot is limited in the
poses that it can achieve.

Forward kinematics makes use of joint parameters to
compute the configuration of chain. Pertaining to human
body, for example, if we touch an object [72], to determine
the links starting from our feet to fingers, it is called FK.
Inverse kinematics reverses this calculation to determine the
joint parameters that achieve a desired configuration [64,
79]. The comparison between IK and FK is shown in Fig. 2.18.

q4
q3

(X, y,6)
FK
Joint angles — End-effector pose
Base 91,02,03,94 . (%Y, 6)
IK
Fig. 2.18 The comparison between FK and IK

A pose may be unachievable due to singularity where the
alignment of axes reduces the effective degrees of freedom
[53]. Hence, a trajectory is chosen, which moves through a
robot singularity. The singularity point could not be reached.
Thus, simulation can assist us to resolve the singularity
problem. In robotics, the singularity point problem refers to
configurations of a robotic system where its mathematical
models, particularly the kinematic or dynamic equations,
become undefined or degenerate [20]. These points trigger

problems such as loss of control or infinite joint velocities,
which severely limit the robot’s ability to move or perform
tasks. Singularity problems are especially important in
robotic manipulators and robotic arms in precision tasks, as
they disrupt the robot’s ability to perform tasks accurately
and safely.

Kinematics [13] is the study of motion without considering
the cause of motion. Inverse kinematics (IK) is an example of
the kinematic analysis of a constrained system of rigid bodies
or kinematic chain. IK makes use of kinematics to determine
the motion of a robot to reach a desired position [64, 79].

The grasping end of a robot arm is designated as the end-
effector. The robot configuration is a list of joint positions
within the position limits of the robot model that do not
violate any constraints. Given the desired end-effector
positions, inverse kinematics (IK) is able to determine an
appropriate joint configuration for which the end-effectors
move to the target pose [64, 79].

Algorithm 8: Closed-form IK for a two-link planar arm

Input: Target coordinates (x, y), link lengths /1, />

Output: Joint angles 6, 6>
1 Compute d <« /x2? + y? // Distance to target
2ifd =11 +bhord < |l —[>| then
L return Error: Target unreachable

%]

i
2011
Compute 6> <— arccos(cos (62))
Compute k| <[] + /2 cos (62)
Compute ky <— /7 sin (6>)
Compute) <— arctan 2(y, x) — arctan 2(k», k1)
return (6, 6»)

=

Compute cos (6>) «

N=REe RN I~ Y

Algorithm 8 shows the pseudocode of IK algorithm. Figure
2.19 displays an example of MATLAB inverse kinematics for
the simple 2D manipulator by using inverse kinematics (IK).
The manipulator of a robot is a simple 2-DoF planar
manipulator with revolute joints. A circular trajectory is

created in a 2D plane which provides points to the inverse
kinematics solver. The solver calculates the joint positions to
achieve this trajectory. The robot is animated to show the
robot configurations that achieve the circular trajectory.

047

-

N

0 0.2 0.4 0.6
X

Fig. 2.19 MATLAB 2D path tracing with inverse kinematics (IK)

Figure 2.20 shows a demonstration of inverse kinematics
in Python with three links. The source code is given in Fig.
2.21.

—4 T T T w; T T T

-4 -3 -2 -1 0 1 2 3 4
Fig. 2.20 A demo of inverse kinematics (IK) using Google Colab

Inverse Kinematics calculation for 3-link arm
def inverse_kinematics(target_x, target_y):
Initialize angles (@ radians for all joints)
angles = np.zeros(len(L))

Iterate through each joint starting from the last joint
for i in range(len(L) - 1, -1, -1):
if 1 == den(L) — 1:
Last joint directly points to the target
angles[i] = np.arctan2(target_y, target_x)
else:
Calculate the position of the end of the current link
x_end = sum(L[j] * np.cos(angles[j]) for j in range(i, len(L)))
y_end = sum(L[j] * np.sin(angles[j]) for j in range(i, len(L)))

Calculate the difference vector

diff_x = target_x - x_end

diff_y = target_y - y_end

distance = np.sqrt(diff_xsk2 + diff_y#x2)

Update the angle using the atan2 function
if distance > L[i]:
angles[i] = np.arctan2(diff_y, diff_x)
else:
angles[i] = angles[i + 1] # Retain the previous angle if target is too close

return angles

Fig. 2.21 The inverse kinematics in Python

2.6 Dynamics and Control

Robot dynamics are the relationship between the forces
acting on a robot and the motion of the robot [20]. Robotics
usually combines three aspects of design work to create robot
systems:

« Mechanical construction: A frame, form, or shape which
was designed to achieve a particular task. The payload,
gravity, weights, and materials are taken into consideration,
correspondingly. The forces and torques are the sources for
each link with the purpose of supporting robot working.

. Electrical components: The components encapsulate
power to control the machinery. Electrical motors (DC or
AC) are thought as the most important component for
control the robots and provide power to drive the robot
working.

« Software: a program for a robot to decide when or how to
conduct actions. The important software for robot working
is ROS, no matter for one robot or a swarm of robots to
coordinate working together.

Dynamics for robot control are related to these
fundamental components:

. Electric motors: DC motors in portable robots or AC
motors in industrial robots, where electric current flows in
two ways as an alternating current (AC) or direct current
(DC).

« Actuators: Actuator converts stored energy into
movement, in most of the time, we make use of electric
motors as the “muscle” to drive robots working.

« Sensors: Sensors provide real-time information to indicate
the states of robots. The sensors are not only applied to
localization, positioning, and navigation but also provide
temperature, air humanity, and battery states.

« Manipulation: Manipulation is the control of robot’s
environment through selective touch or contact.

The operation: Pick and place is the typical one of
manipulations; basically the pick-and-place operation is
based on translations and rotations of robot components in
3D space.
End-effector: The device is located at the end of a robotic
arm. The end-effector was designed to interact with the
environment, and most of the time, it will replace human
hands and fingers. Although the design is not perfect, the
end-effector will be taken great values in the operation.
The interaction between human control and machine

motions in the incremental HRI (i.e., human and robot
Interactions) is listed as follows:

Teleoperation: A human controls each component and
movement, and the corresponding machine actuator is
specified by the operator through wireless communications
or mobile computing. The instructions will be understood
and analyzed for robot moving or working.

Supervisory: A human specifies general moves or position
changes, and the machine understands the instructions and
decides specific movements of its actuators to get the
destination or location with the specified states.
Autonomy: The operator specifies only the task, and the
robot manages itself to completion [12]. Usually, a series of
instructions of these tasks will be thought as one unit or
package, and the batch instructions will be executed till the
end of these tasks. Robots have the ability to deal with
errors or mistakes during the execution.

Full autonomy: The machine will create and complete all
the tasks without human interactions [32]. The robots have
the ability to deal with any problems during the execution.

In dynamics and control of a serial-link manipulator, each

link is supported by using a reaction force and torque from
the preceding link, which is subject to its own weight, as well
as the reaction forces and torques from the links. We have the
joint torques and joint forces applied directly as a vector to
each joint [46].

Q=M(q)i+Clg,d)i+G(q) +I(q) -Fru (225
where G(q) is the gravity term, M(q)q is the inertia matrix,

C(q, ¢)q is centrifugal torques, J (q)T - F g is the external
force, and J is the Jacobian matrix of the end-effector [19]. In
inverse dynamics, given the pose ¢, velocity ¢, and
acceleration ¢, Eq. (2.25) is applied to compute the required
joint forces or joint torques.

2.7 Applications of Robotics

Robotics [20] encompasses robotic vision and robotic control.
Robotic vision usually encapsulates camera collaboration,
image formation, image processing, stereo vision, and 3D
reconstruction. The relevant content was depicted in the
previous sections of this book. Robotic control takes effect
through the research areas such as machine intelligence [14,
25, 49], genetic algorithm (GA), reinforcement learning [22,
45], visual servoing, and imitation learning.

Visual servoing is quite advanced. Given a robot with its
specifications and configuration, the robot is expected to
work effectively. Payload refers to the amount that a robot
can be lifted and carried. In the family of human robots, the
members include Android (male) and Gynoid (female); human
robot has two kinds, one is male, and the other is female.
Furthermore, the robot family has other members such as
mobile robots, arm-type robots, and flying robots that refer to
drones [9, 54, 55].

Pertaining to arm-type robots, the Cartesian robot’s arm
has three axes with Cartesian coordinates. The tiny robots are
possible to be installed in kitchens for the facilitation of
cutting fruits and preparing for a cup of coffee which may
take account of nutrition estimation [65, 69, 70].

The Cartesian/Gantry robot’s arm has three prismatic
joints, and the axes are coincident with a Cartesian
coordinator. It has 3D prismatic, which means the arms are
working along X, Y, and Z axes [9, 54, 55], the joints can

move up and down and back and forth, and the arm-type
robot is famous for its six degrees of freedom (DoF).
Regarding the number of axes, roll, pitch, and yaw operations
are required for full control of manipulator or end-effector as
shown in Fig. 2.22. In robotics [40], regarding airplanes or
drone systems [43], there are three rotations: pitch, yaw, and
roll around the axes. The degree of freedom (DoF) and the
number of joint points of robots are not the same [40].

Fig. 2.22 An airplane and a helicopter. (a) The position of all three axes: roll,
pitch, and yaw, with the right-hand rule for describing its rotations. (b) The work
envelope of a helicopter

The work envelope [60] refers to the region of space where
a robot can work or layout. Suppose these robots have a 3D
work envelope, and because a robot is made of iron and steel,
we need to limit the motion of robots. In the work envelop,
the robots are moving within the limited premise.

Robot kinematics is the study of how a robot’s joints are
connected and how they relate to the robot’s spatial layout. It
is a fundamental topic in robotics [40] that takes use of
geometry to model the robot’s links of rigid bodies [20].
Kinematics is related to the types of joints. Figure 2.23 shows
a pick-and-place robot to pick up ping-pong balls [38, 50, 74-
76, 78, 81] in our building.

Fig. 2.23 A wheeled robot is picking up table tennis balls with two cameras and
one end-effector

The compliance refers to the measure of distance or angle
of a robot joint. The speed includes angular or linear velocity.
That means the robot moves not only transitional but also
rotational. While moving from this angle to that angle like a
space shuttle, there are velocity and acceleration limits, the
maximum speed over short distance starts from zero. This
process is called acceleration.

The power source includes electronic motors and
hydraulics, i.e., two types of powers. Nowadays, it is
completely electronic motor-based. One of the advantages is
that electronic motors are quiet without noise.

Regarding robotic mapping, robots need a map and draw
the map of the working place automatically. Robotic
navigation leads the robots from one place to another by
using map. When human communicates with robots, the

robots can understand human intentions [30]. As well known,
OpenAl ChatGPT is a multimodal model software, which
showcases how many steps are needed if a task is expected to
be completed.

Robots exactly follow human instructions. The whole
process may be given through voices or talks. Given a prompt,
a task or a job is completed on time. Currently, all robots are
based on imitation learning. If robots learn from human’s
performance and experience, the operation will be much
standard. If there has a competition contest whether human
completes with robots, the outcome is that human cannot
guarantee always beating robots in future. But the robots can
ensure they will win our human sooner or later. Through
Google software MediaPipe, it shows that robots can
recognize human poses [17, 18, 67, 76] and reflect the key
points from human body to the joint points of robots. Human
facial emotion recognition [61, 71] can be implemented by
using software. Human expression of emotions encloses
angry, happy, and others [2, 48, 71].

The fundamental requirement in robotic vision [20] is to
represent position and orientation of robots in an
environment. Basically, the position and orientation are
described by using its coordinate systems as shown in Fig.
2.24. A coordinate frame, or a Cartesian coordinate system, is
a set of orthogonal axes that intersect at a point known as the
origin. The position and the orientation of a coordinate frame
are known as its pose which has shown graphically as a
coordinate system [18]. A Cartesian coordinate system is a
set of axes that intersect at support node as an origin. The
origin is at the base of arm-type robots. If the system is
initialized, the position and the orientation based on the
origin of the coordinate frame are known, as shown in Fig.
2.25. That is the reason why the coordinate system is defined,
and the important characteristics of relevant tools should be
considered. These characteristics are possible to be
composed or compounded together. The world coordinates
will be defined by using affine transformation in Eq. (2.26).

C1ﬁr

~

& R" % £k
B W

Fig. 2.24 The coordinate frame of robots in a scene. Cy, C1, and C5 are camera
coordinate frames; R; and R2 are robotic ordinate system

b,

- ‘l

;o_ = UR

Fig. 2.25 Arm-type robots and the coordinate frames, where Ry and R; are
robotic coordinate frames on the bases

X' a-cos(@) —sin(f) AX X
Y| = sin (0) B -cos(0) AY Y (2.26)
A 0 y AZ) \Z

where (AX, AY, AZ) € R? is the shift, § € R is the rotational
angle, and a € R, 8 € R, and v € R are the scaling factors
between two coordinate systems. This equation transforms
the 3D point P = (X, Y, Z)T € R3 in O; system to the point
Pr=(X1,Y1,Z1)" in Oy system.

The inverse transformation will transform the point P/
back to P. The inverse matrix A satisfies that AA~! =1 Iis

the identity matrix, and det (A) # 0. The affine
transformations are shown in Fig. 2.26.

®p

o1

Fig. 2.26 Affine transformation for the point P in two different coordinate
systems O; and O,

If a camera on the robot is fixed, this forms a basic
relationship between the robot and the camera. A robot
system must be kept in our mind fundamentally. There are
many robots, cameras, and objects in the same environment.
The occlusion of obstacles needs to be avoided in case that
one blocks another [68], the position and orientation of the
spatial object are related to a directed graph.

An alternative representation of spatial relationships is a
directed graph. In an environment, we need to understand
that there is a relationship between translation and
orientation. Translation means shift from one place to
another, rotation refers to rotations along X, Y, or Z axis, and
it is 3D-based. Between the spaces, we have a transition
matrix.

The object pose is varying as a function of time. With the
difference, object pose will have different trajectory.
Trajectory, the temporal sequence of poses, smoothly changes
from an initial pose to a final pose. The trajectory is a
temporary sequence of poses from one place to another, most
changes from the initial pose to the final pose. Given a
starting point and the end point, between them, the rate of
change of positions is temporal derivative

dE Al s0 j((t)) (2.27)
dw __ . w
@ = (2.28)

The linear velocity is v;, and the angular velocity is v,.
Correspondingly, we have linear acceleration a; and angular
acceleration a,,.

V] = %;va = dw (2.29)

a = Big, = Lo (2.30)
where s and w are the changes of positional translation and
rotational angle.

We estimate the pose of moving objects. While the object is
moving, the key issue is that this object has velocities of
translation and rotation instead of only one kind of velocities.
The velocity of a linear segment increases its duration time.
Given measurements from linear velocity and angular velocity
sensors, the pose for a moving object is estimated. As the
velocity of linear segment increases, its duration decreases,
and ultimately its duration would be zero. In fact, too high or
too low speed, the maximum velocity will result in an
infeasible trajectory. A path is a locus in space that leads from
an initial pose to a final pose [27]. A trajectory is a path with
specified timing. An important characteristic of a trajectory in
robotics is smooth [57].

The trajectory has defined boundary conditions for
position, velocity, and acceleration. Smoothness means that
its first few temporal derivatives are continuous. Polynomials
are simple to be computed that can easily provide the
required smoothness and boundary conditions. There is a
need to move smoothly along a path through one or more
intermediates or via points without stopping. The trajectory
has defined the boundary conditions for position, velocity, and
acceleration. That means everything is under control.

Fundamentally, smoothness reflects that the first
derivatives are existence and continuous. Polynomials are
simple to be computed that can easily unveil the required

smoothness and boundary conditions [57]. The simple way to
control a robot is to harness polynomials. However,
polynomials are hard to be controlled after degree 3 for
interpolating purpose [40].

f(z) =ag+aix +ayx®+ -+ +a,z" = ag + E L a;z'(2.31)

where a,, # 0,a;,x € R, n € N. There is often a need to move
smoothly along a path through one or more intermediates or
via points without stopping. A trajectory is a piecewise curve
[27, 73]. These points can control the curve, and the degree
cannot be greater than four.

2.8 Lab Session: Mobile Arm with
MATLAB

Interactive design for a mobile manipulator with four
omnidirectional wheels [59] is split into four sections:

« Define a robot and environment

« Create a task and trajectory scheduler

« Add core manipulator dynamics and design a controller
« Verify complete workflow of the robot and environment

MATLAB provides the interactive design for mobile
manipulator. The manipulator provides Link1, Link2, and
Link3. In most of the factories, we use robots to move the
object from one place to another. MATLAB has provided such
a robot, and the basic operations include:

The first move position and the open grips

Close the ribs, and move the position to the place
Approach the position, and move to the place position
Open the grip, and start from here

The robot arms move to the designed position first, open
the gripper, and close the grip. This is a standard operation of
MATLAB examples, which has eight states. The last one was
to verify the completed work for a robot.

At the end of this chapter, all readers are recommended to
complete the lab report. Please fill in the form shown in Table
2.1 after each lab session (2 hours).

Table 2.1 Lab report for robotic vision

Name <First Name Last Name>
Email <firstname.lastname @mailbox >
Lab date <dd-mm-yy>

Submitted date

<dd-mm-yy>

Project title

Build Basic Rigid Body Tree Models

Lab objectives

The objective is to demonstrate how to construct a simple robot arm
with five degrees of freedom (DoF) by using the components of the
rigid body tree robot model

Configurations and
settings

<The preferences, software, hardware, platforms, tools, etc.>

Methods <The relevant scientific theories or concepts >
Workflow <The step-by-step procedure for the experiment>
Datasets <The data and materials for your experiments>
Input <image filename, size, resolution >

Output <image filename, size, resolution>

Testing steps

<Functional & non-functional testing methods step by step>

Bugs or problems

<The system error code, lines of the code>

Result analysis <The tables, graphs, and figures, etc.>
Conclusion/reflection | <The strengths and weaknesses, or learned from this project >
References https://au.mathworks.com/help/nav/ug/plan-mobile-robot- paths-

usingrrt.html

Appendix: <Source codes with comments and line numbers>

An example of this lab report is:

« Project title: Build basic rigid body tree models.

- Project objectives: In order to demonstrate how to
construct a simple robot arm with five degrees of freedom
(DoF) by using the components of the rigid body tree robot
model. The model constructed in this example is a typical

robot arm.

. Configurations and settings: MATLAB Online

« Methods: (1) Create a rigid Body Tree robot model. (2)
Create a series of linkages as rigid body objects. (3) Create
collision objects for each rigid body with different shapes
and dimensions. (4) Add the collision bodies to the rigid
body objects. (5) Set transformations of the joint
attachment between bodies. (6) Create an object array for
both the bodies and joints. (7) Visualize the robot model to
confirm the dimensions. (8) Use the interactive GUI to move
the model around. (9) View a list of the final tree
information. (10) Move the interactive marker around to
test different desired gripper positions.

- Implementation steps:

1. Create Rigid Body Elements
2. Attach Joints

3. Assemble Robot

4. Interact With Robot Model

. Testing steps:
1. Verify Rigid Body Elements

2. Test Joint Connections
3. Validate Robot Assembly
4. Interact with the Robot Model

5. Simulation and Performance Testing

« Result analysis: The output images visually validate the
creation, assembly, and interactive capabilities of the robot
arm, enhancing the written descriptions and confirming the
project’s objectives have been met.

« Conclusion/reflection: The development of a basic rigid
body tree model of a robot arm is shown by using MATLAB.
The detailed step-by-step implementation and testing
procedures highlight MATLAB'’s capabilities for robotic
modeling and simulation. The absence of bugs or issues
indicates a robust and well-executed experiment.
Additionally, the integration of a GUI for interaction
significantly enhances the model’s practical applicability in
real-world scenarios.

« Readings: https://au.mathworks.com/help/robotics/ug/
build-basic-rigid-body-tree-models.html

2.9 Exercises

Question 2.1 Why the Braitenberg vehicle is the simplest
robot? What are the features of Braitenberg vehicle?

Question 2.2 What is automaton in computer science?

Question 2.3 What are the differences between
probabilistic road map and Voronoi road map?

Question 2.4 Why dead reckoning algorithm is still
effective in the navigation for mobile robots?

Question 2.5 What is the full autonomy in robotics?

Question 2.6 Regarding robotic arm, how many degrees of
freedom (DoF) of each joint at most has?

Question 2.7 What is the relationship between Forward
Kinematics (FK) and Inverse Kinematics (IK)?

https://au.mathworks.com/help/robotics/ug/build-basic-rigid-body-tree-models.html

Question 2.8 How many numbers of axes is suitable for a
humanoid robot?

Question 2.9 What are the differences between the number
of axes and degree of freedom (DoF)?

References

1. Adiyatov O, Varol H (2017) A novel RRT-based algorithm for motion planning
in dynamic environments. In: IEEE international conference on mechatronics
and automation (ICMA), pp 1416-1421

2.
Alexander R (2022) Human facial emotion recognition from digital images
using deep learning. Master’s Thesis, Auckland University of Technology, New
Zealand

3.
Al-Sarayreha M (2020) Hyperspectral imaging and deep learning for food
safety. PhD Thesis. Auckland University of Technology, New Zealand

4.
Al-Sarayreh M, Reis M, Yan W, Klette R (2017) Detection of adulteration in red
meat species using hyperspectral imaging. In: Pacific-rim symposium on image
and video technology, pp 182-196

5.
Al-Sarayreh M, Reis M, Yan W, Klette R (2018) Detection of red-meat
adulteration by deep spectral-spatial features in hyperspectral images.] Imag
4(5):63

6.
Al-Sarayreh M, Reis M, Yan W, Klette R (2019) Deep spectral-spatial features
of snapshot hyperspectral images for red-meat classification. In: International
conference on image and vision computing New Zealand

7.
Al-Sarayreh M, Reis M, Yan W, Klette R (2019) A sequential CNN approach for
foreign object detection in hyperspectral images. In: International conference
on information, communications and signal

8.
Al-Sarayreha M, Reis M, Yan W, Klette R (2020) Potential of deep learning and
snapshot hyperspectral imaging for classification of species in meat. Food
Control 117:107332

9.

Arnold RD, Yamaguchi H, Tanaka T (2018) Search and rescue with
autonomous flying robots through behavior-based cooperative intelligence.]
Int Humanit Action 3(1):18

10.
Aurenhammer F, Klein R, Lee D (2013) Voronoi diagrams and delaunay

triangulations. World Scientific, Singapore

11.
Azevedo F, Cardoso JS, Ferreira A, Fernandes T, Moreira M, Campos L (2021)

Efficient reactive obstacle avoidance using spirals for escape. Drones 5(2):51

12.

13.
14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

Bedini S (1964) The role of automata in the history of technology. Technol
Culture 5(1):24-42

Beggs] (1983) Kinematics. Taylor & Francis, Milton Park

Bengio Y, Lecun Y, Hinton G (2021) Deep learning for AI. Commun ACM
64(7):58-65

Bouzoualegh S, Guechi E-H, Kelaiaia R (2019) Model predictive control of a
differential-drive mobile robot. Acta Universitatis Sapientiae Electr Mech Eng
10(1):20-41

Cabuk VU, Kubilay Savkan A, Kahraman R, Karaduman F, Kiril O, Sezer V
(2018) Design and control of a tennis ball collector robot. In: International
conference on control engineering and information technology (CEIT)

Cao X, Yan W (2022) Pose estimation for swimmers in video surveillance. In:
Multimedia tools and applications, Springer, Berlin

Chen Z, Yan W (2023) Real-time pose recognition for billiard player using
deep learning. In: Deep learning, reinforcement learning and the rise of
intelligent systems, chap 10. IGI Global, Hershey, pp 188-208

Choset H, Hutchinson S, Lynch K et al (2005) Principles of robot motion:
theory, algorithms, and implementation. MIT Press, Cambridge

Corke P Robotics, Vision and control, 2nd edn. Springer Nature, Berlin

Cormen T, Leiserson C, Rivest R, Stein C (2022) Introduction to algorithms,
4th edn. MIT Press, Cambridge

Dabney W et al (2020) A distributional code for value in dopamine-based
reinforcement learning. Nature 577: 671-675

Dong K, Yan W (2024) Player performance analysis in table tennis through
human action recognition. Computers 13(12):332

Elfes A (1989) Using occupancy grids for mobile robot perception and
navigation. Computer 22(6):46-57

Ertel W (2019) Introduction to artificial intelligence. Springer International
Publishing, Berlin

Farin G (1993) Curves and surfaces for computer-aided geometric design: a
practical guide, 3rd edn. Academic, Cambridge

Farin G (1997) Curves and surfaces for computer-aided geometric design.
Elsevier, Amsterdam. ISBN 978-01-22490-54-5

Farin G (2002) Curves and surfaces for CAGD: a practical guide, 5th edn.
Morgan Kaufmann, Burlington

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Fraenkel GS, Gunn DL (1961) The orientation of animals. Kineses, taxes and
compass reactions. Dover Publications, Garden City

Gao X, Liu Y, Nguyen M, Yan W (2024) VICL-CLIP: enhancing face mask
detection in context with multimodal foundation models. In: ICONIP

Gong X, Gao Y, Wang F, Zhu D, Zhao W, Wang F, Liu Y (2024) A local path
planning algorithm for robots based on improved DWA. Electronics
13(15):2965

Hopcroft J, Motwani R, Ullman J (2001) Introduction to automata theory,
languages, and computation. Addison-Wesley, Boston

Humpherys J (2012) A fresh look at the Kalman Filter. SIAM Rev 54(4):801-
823
[MathSciNet]

Jonathan V (2021) Tech explained: Ackermann steering geometry. Racecar
Engineering

Kang J, Lim D, Choi Y, Jang W, Jung J (2021) Improved RRT-connect algorithm
based on triangular inequality for robot path planning. Sensors 21(2):333

Kavraki LE, Svestka P, Latombe J-C, Overmars MH (1996) Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Trans Rob Autom 12(4):566-580

Klette R (2014) Concise computer vision: an introduction into theory and
algorithms. Springer-Verlag London, London

Li H, Wu H, Lou L, Kihnlenz K, Ravn O (2012) Ping-pong robotics with high-
speed vision system. In: International conference on control automation
robotics & vision (ICARCV), pp 106-111

Lu]J (2016) Empirical approaches for human behavior analytics. Master’s
Thesis, Auckland University of Technology, New Zealand

Lynch K, Park F (2017) Modern robotics: mechanics, planning, and control.
Cambridge University Press, Cambridge, MA

Maybeck PS (1990) The Kalman filter: an introduction to concepts. In
Autonomous robot vehicles, Springer, Berlin, pp 194-204

Mehtab S (2022) Deep neural networks for road scene perception in
autonomous vehicles using LiDARs and vision sensors. PhD Thesis, Auckland
University of Technology, New Zealand

Meng Q, Yan W, et al (2025) Optimization of Sassafras tzumu leaf color
quantification with UAV RGB imaging and Sassafras-net. Information
processing in agriculture

http://www.ams.org/mathscinet-getitem?mr=3023372

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Ming Y, LiY, Zhang Z, Yan W (2021) A survey of path planning algorithms for
autonomous vehicles. In: International journal of commercial vehicles

Mnih V et al (2015) Human-level control through deep reinforcement learning.
Nature 518:529-533

Murphy R (2019) Introduction to Al robotics, 2nd edn. Bradford Books,
Bradford

Muscat J (2014) Functional analysis. Springer, Berlin

Nguyen M, Yan W (2023) From faces to traffic lights: a multi-scale approach
for emotional state representation. In: IEEE international conference on smart
city

Norvig P, Russell S (2016) Artificial intelligence: a modern approach, 3rd edn.
Prentice Hall, Upper Saddle River

Peng D (2025) Vision perception optimization and adaptive control for
resource-constrained platform: a ping-pong ball pickup & place system.
Master’s Thesis, Auckland University of Technology, New Zealand

Peng D, Yan W (2025) Test-time training with adaptive memory for traffic
accident severity prediction. Computers 14:186

Perera S, Barnes N, Zelinsky A (2014) Exploration: simultaneous localization
and mapping (SLAM). In: Computer vision: a reference guide. Springer US,
Berlin, pp 268-275

Phillips J (2007) Freedom in machinery. Cambridge University Press,
Cambridge

Piacentini C, Bernardini S, Beck JC (2019) Autonomous target search with
multiple coordinated UAVs. J Artif Int Res 65(1):519-568
[MathSciNet]

Queralta JP, Raitoharju J, Gia TN, Passalis N, Westerlund T (2020) AutoSOS:
towards multi-UAV systems supporting maritime search and rescue with
lightweight AI and edge computing. arXiv preprint arXiv:2005.03409

Rashid H, Turuk A (2015) Dead reckoning localisation technique for mobile
wireless sensor networks. IET Wirel Sensor Syst 5(2):87-96

Ravankar A, Ravankar AA, Kobayashi Y, Hoshino Y, Peng C-C (2018) Path
smoothing techniques in robot navigation: state-of-the-art, current and future
challenges. Sensors 18(9):3170

Se S et al (2001) Vision-based mobile robot localization and mapping using
scale-invariant features. In: The international conference on robotics and
automation (ICRA)

http://www.ams.org/mathscinet-getitem?mr=3990446

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Siegwart R, Nourbakhsh I, Scaramuzza D (2004) Introduction to autonomous
mobile robots. MIT Press, Cambridge

Singh CD, He B, Fermiiller C, Metzler C, Aloimonos Y (2024) Minimal
perception: enabling autonomy in resource-constrained robots. Front Robot Al
11:143182

Song C, He L, Yan W, Nand P (2019) An improved selective facial extraction
model for age estimation. In: IEEE IVCNZ

Stentz A (1994) Optimal and efficient path planning for partially-known
environments. In: International conference on robotics and automation, pp
3310-3317

Stentz A (1995) The focussed D* algorithm for real-time replanning. In:
International joint conference on artificial intelligence, pp 1652-1659

Sugihara T (2011) Solvability-unconcerned inverse kinematics by the
Levenberg-Marquardt method. IEEE Trans Robot 27(5):984-991

Tang S, Yan W (2024) Utilizing RT-DETR model for fruit calorie estimation
from digital images. Information 15(8):469

Tang Y, Zakaria MA, Younas M (2025) Path planning trends for autonomous
mobile robot navigation: a review. Sensors 25(4):1206

Tantiya R (2025) Design and implementation of a high DoF robot arm.
Master’s Thesis, Auckland University of Technology, New Zealand

Tokunaga S, Premachandra C, Premachandra HWH, Kawanaka H,
Sumathipala S, Sudantha BS (2021) Autonomous spiral motion by a small-type
robot on an obstacle-available surface. Micromachines 12(4):375

Xia 'Y, Nguyen M, Yan W (2023) Kiwifruit counting using KiwiDetector and
KiwiTracker. In: Intelligent systems, pp 629-640

Xiao B, Nguyen M, Yan W (2023) Fruit ripeness identification using
transformers. Appl Intell 53:22488-22499

Xu G, Yan W (2023) Facial emotion recognition using ensemble learning. In:
Deep learning, reinforcement learning, and the rise of intelligent systems

Yan WQ (2019) Computational methods for deep learning, 2nd edn. Springer,
Berlin

Yan W, Ding W, Qi D (2001) Rational many-knot spline interpolating curves
and surfaces. J Image Graph 6(6):568-572

Yang G (2025) ChatPPG: multi-modal alignment of large language models for
time-series forecasting in table tennis. Master’s Thesis, Auckland University of
Technology, New Zealand

75.

76.

77.

78.

79.

80.

81.

82.

Yang Y, Kim D, Choi D (2023) Ball tracking and trajectory prediction system
for tennis robots.] Comput Design Eng 10(3):1176-1184

Yang G, Nguyen M, Yan W, Li X (2025) Foul detection for table tennis serves
using deep learning. Electronics 14(1):27

Zarchan P, Musoff H (2000) Fundamentals of kalman filtering: a practical
approach. American Institute of Aeronautics and Astronautics, Reston

Zhang Y, Zhao Y, Xiong R, Wang Y, Wang J, Chu J (2014) Spin observation and
trajectory prediction of a ping-pong ball. In: IEEE international conference on
robotics and automation (ICRA), pp 4108-4114

Zhao J, Badler N (1994) Inverse kinematics positioning Using nonlinear
programming for highly articulated figures. ACM Trans Graph 13(4):313-336

Zhao H, Xu S, Yan W, Xu D (2025) Design and optimization of target detection
and 3D localization models for intelligent muskmelon pollination robots.
Horticulturae 11(8):905

ZhaoY, Wu], Zhu Y, Yu H, Xiong R (2017) A learning framework towards real-
time detection and localization of a ball for robotic table tennis system. In:

IEEE international conference on real-time computing and robotics (RCAR),
pp 97-102

Zhou Z, Guo J, Zhu Z, Guo H (2024) Uncalibrated visual servoing based on
Kalman filter and mixed-kernel online sequential extreme learning machine for
robot manipulator. Multimedia Tools Appl 83(7):18853-18879

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2026
W. Q. Yan, Robotic Vision, Advances in Computer Vision and Pattern Recognition
https://doi.org/10.1007/978-981-95-4360-1_3

3. Image Processing for Robotics

Wei Qi Yan!
(1) Department of Computer and Information Sciences, Auckland
University of Technology, Auckland, New Zealand

Abstract

In this chapter, robotic vision is elucidated from the aspects of camera
calibration, digital image formation, and image processing. Starting from
image formation of digital cameras, we form the images and explore
their properties, and finally image processing at semantic level is
detailed. The significance of this chapter is that we depict computer
vision with image processing for robotics.

3.1 Fundamentals of Image Formation

In human vision, our eyes are a type of effective sensors for object
detection and recognition, robotic navigation, obstacle avoidance, etc.
[16]. Compared to our ears, our human eyes are more critical organ
which can receive over 75% information. Cameras mimic the function of
human eyes. In robotics, digital cameras are harnessed as robotic eyes
[10], and cameras are taken into account to create vision-based
competencies for robots [16]. We take into consideration of digital
images to detect and recognize objects and navigate robots within the
given real world. While robots are moving around world [27], the world
is sensed by using robotic vision [16] to obtain real reality, and visual
objects are sought on the images [19]. Robots armed with vision and
intelligence could greatly reduce our human labors [22], such as the
operation: pick and place. The technological development has made this
feasible for robots to facilitate with cameras. A group of new emerging
algorithms, cheap sensors, and plentiful computing power make cameras
as a practical and applicable sensor.

Vision takes its effect through natural light. Generally,
electromagnetic radiation (EMR) is classified by wavelength into radio
waves, microwaves, infrared, the visible spectrum that our eyes perceive
as light, ultraviolet, X-rays, and gamma rays. The light spans the visible

https://doi.org/10.1007/978-981-95-4360-1_3

spectrum which is usually defined as having wavelengths in the range of
400-700 nanometers (nm) as shown in Fig. 3.1. The frequencies of
infrared rays are up to 1,050 nm; children and young adults may
perceive ultraviolet wavelengths down to about 310-313 nm.

[L
400 450 500 550 600 650 700 750
Wavelength (nm)

Fig. 3.1 The visible spectrum

Our human eyes see colors in the limited range of wavelength with
visible reflection light and visible object. If ultraviolet (UV) and infrared
rays could not be viewed by digital cameras or robotic vision, the image
will be rendered by using visualization [28, 32]. In robot and human
perception, the information such as size, shape, and position of visual
objects, as well as other characteristics such as color and texture [10], is
deduced. The colors enclose binary color, grayscale color, and real color.
Binary color only has two colors: black and white [23-25]. In grayscale
images, the intensities of red color, green color, and blue color are the
same or similar. Color and texture are thought as visual features of
digital images. Nowadays, the images from digital cameras are with real
colors at retina level.

A simple pinhole is able to create an inverted image on the wall of a
darkened room. When the sun rays pass through a hole, it will form an
image on wall. In a digital camera, a glass or a plastic lens forms an
image by using its semiconductor chip with an array of light-sensitive
devices to convert light to an image. The chips are valuable, and there
are challenges to develop new chips. The process of image formation
involves a projection of the 3D world onto a 2D surface. In the real world,
all objects are three-dimensional, but on images, the objects are two-
dimensional only. On the given images, the depth information is
disappeared. It is not possible to observe from the image whether the
object is a large one in distance or a small one which is closer to the real
object. From optic physics, z coordinate of an object and its image are
formed by using the lens law as shown in Fig. 3.2.

Fig. 3.2 The formation of images in geometry optics

Tt =7 (3.1)
where z, € R", z, # 0 is the distance to the object, z; € R", z; # 0, is
the distance to the image, and f € R, f # 0, is the focal length of the
lens. The coordinate frame of cameras is with z-axis defining the center
of the field of view (FoV). Our human eyes usually perceive a view within
the limited field. A point at the world coordinates (X,Y, Z) € R3 is

projected to the image plane (z,y) € R?, after taken a photograph by

using Eq. (3.2).
_ £ X
{m 17 (3.2)

Y
y=1r%
where (z,y) is the pixel location on the given image, (X,Y, Z) is a point
of visual object in 3D space, and Z # 0 is the depth.

3.2 Camera Calibration

Regarding robotic vision [16], we set up a group of cameras and gauge
the 3D space [10]. Camera calibration is a conventional way to sense and
measure the 3D world. The calibration is the process of determining the
camera’s intrinsic parameters and the extrinsic parameters with respect
to the world coordinate system. It relies on a set of world points whose
relative coordinates are obtained and whose corresponding image plane
coordinates are also gained. Camera calibration establishes a
correspondence between real-world space and image space. The intrinsic
parameters, including distortion parameters, can be harnessed to
estimate the relative pose of chessboard in each image. However,
classical calibration demands a 3D target or 3D object. Hence,

z,y,2] =R-[X,Y,Z]' +T (3.3)
m/ =[xty =[z/z+cny/z4c,] (3.4)

somr=[u,o]” = [fy-at, £y (3.5)
where R is the rotation matrix, T is the translation matrix, and [R|T] is
called the rotation-translation matrix. Hence,

s-m/=A - [R|T]M/ (3.6)
where (X,Y, Z) € R? is the coordinate of a 3D point in the world space;
(u,v) € R? is the coordinate of projection point in pixels; (c;,¢,) € R? is
a principal point, namely the image center; (f;, fy) € R? is the focal
lengths expressed in pixel-related units; and A is a camera matrix or a
matrix of intrinsic parameters. The joint rotation-translation matrix|R|T|
is named as a matrix of extrinsic parameters. The steps of camera
calibration for correcting image distortion are listed as follows:

« Corner extraction

« Point ordering

. Point correspondences
« Bundle adjustments

If we have four images from four cameras, namely images 11, I, I3,
and I, are from cameras C, Cy, (5, and C}4, respectively, the problem is
still about how to find the parameters of cameras and parameters of 3D
objects.

In the environment as shown in Fig. 3.3, no matter how the objects
move or no matter how the cameras shift, the locations are promptly
acquired from the environment. Especially in camera calibration, we
should have a chessboard with a grid layout as shown in Fig. 3.4.

Camera 1 Camera 2
i Camera 3 Camerad

Image 3, /.I’ma

Image 1

Fig. 3.3 A multiple cameras environment for camera calibration

Fig. 3.4 Our chessboard for camera calibration

In camera calibration, the first step is for corner extraction. The
corners are the intersection between edges. A corner in an image is
detected at a pixel location where two edges of different directions
intersect [17]. Corners usually lie on high-contrast regions of image. A
corner pixel has surroundings varying from all of its near neighbors in
omni-directions. If the corners are attained, the points are sorted in a
proper sequence. Thus, the correspondences of these corners are
earned. From a robot’s view, what our human sees is not matched with
what the camera captured [29]. As the summery, the camera calibration
in pseudocode is shown in Algorithm 9.

Algorithm 9: Camera calibration
Input: A set of N images of a known calibration pattern (e.g., chessboard)
Output: Camera intrinsic matrix K, distortion coefficients D, extrinsic
parameters for each image
for each image i = 1 to N do
Detect the 2D coordinates of the pattern corners in the image
L Store the corresponding 3D world coordinates of the corners

o b

4 Use the set of 2D-3D correspondences to estimate the camera parameters:

5 Estimate the intrinsic matrix K (focal length, principal point, skew)

6 Estimate distortion coefficients D (radial and tangential)

7 Estimate extrinsic parameters (rotation and translation for each image)

8 Optimize all parameters using nonlinear least squares (e.g.,
Levenberg—Marquardt)

return K, D, and the set of extrinsic parameters

b=

3.3 Essentials of Image Processing

After camera calibration, image processing [10] will be conducted. A
digital image is a rectangular array of picture pixels. Robots always
gather imperfect images of the world with artifacts due to noise, shadow,
reflection, uneven illumination [22], etc. The image processing
algorithms operate pixelwise on a single image or a pair of images or on
a group of pixels within an image [21, 31, 33]. The image processing has
two categories:

« Monadic operations: Each output pixel is based on a function of
corresponding input pixel. For example, histogram normalization only
takes pixel intensities into consideration, the results of statistics show
how the values of pixels are distributed on the range from 0 to 255,
and the number with the same values of pixels will be counted. In
histogram normalization, all the values of histograms will be mapped to
the interval [0, 1].

« Spatial operations: Each pixel in the output image is a function of all
pixels in a region surrounding the corresponding pixel in the input
image; a typical example is convolution operation [30]. The convolution
is a linear spatial operation, and the kernel of convolution operation
usually is a standard Gaussian distribution.

Olu,v] = E G hew I(u +i,v+ j)K(¢,), V(u,v) €I (3.7)
where K is the convolution kernel, and W is the image window. Hence,
O0=IK (3.8)
where ® is the convolution operator. Gaussian kernel is symmetric:
22402
G(z,y) = giye 2 (3.9)

where o € R is the parameters of standard deviation.

Filters are designed to respond to a variety of edges at any arbitrary
angle of digital images. For example, Sobel kernel is considered as an
image edge detector.

+1 0 -1

G, = |+2 0 —2| *I (3.10)
+1 0 -1
+1 +2 +1

G,= |0 0 0]=«I (3.11)
-1 -2 -1

where I is the source image, G, and G, are two matrices which at
each point contain the horizontal and vertical derivative approximations,
respectively, and “x” denotes the 2D convolution operation.

Canny edge detector [9] is an edge detection operator that takes use
of a multistage algorithm to detect a wide range of edges in images

which was developed in 1986 [18]. The advantages of Canny edge
detector are (1) detection of edge with low error rate, (2) the point
detected from the operator could accurately localize on the center of
edges, and (3) the image noise should not create false edges. Gaussian
filter is employed to smooth the image in order to remove noise. A5 X 5
Gaussian filter is given as

2 4 5 4 2
4 9 12 9 4
Tss= |5 12 15 12 5|, T=T" (3.12)
4 9 12 9 4
2 4 5 4 2

Hence, the gradient and the direction of edges are determined by
using Egs. (3.13) and (3.14).

|G| = 4/G.2+G,° (3.13)

where VG = (G, G‘ry)T is the gradient of each pixel (z,y) in image
I(z,y), x=1,2,...,Wandy=1,2,...,H W € N and H € N are the
width and the height of image 1.

6 =atan2 (G,, G,) (3.14)
where G is the gradient magnitude, computed by using the Pythagorean
addition operator. atan2(-) is the arctangent function for calculating the
edge direction angle # which is rounded to one of the four angles
representing vertical, horizontal, and two diagonals, namely 0°, 45°, 90°,
and 135°. The Canny detector [9] applies double threshold to determine
potential edges and finalizes the detection of edges by suppressing all
other edges that are weak and not connected to strong edges.

In computer vision and image processing, blob detection methods aim
at detecting regions in a digital image that differ in properties, such as
brightness or color, compared to surrounding regions [20]. The most
popular method for blob detection is implemented by using convolution
operations. There are two main classes of blob detectors: (1) the
differential methods based on derivatives of the function with respect to
position and (2) the local extrema methods based on finding the local
maxima and minima of the function. Blob detection is often employed in
object detection and recognition, medical imaging, and key point
detection.

A silhouette refers to a solid and shape-based representation of an
object or subject, typically shown as a dark shape on a lighter
background. A silhouette image is represented as a solid shape of a
single color which is related to image binarization in image processing
[14]. The interior of a silhouette is featureless. Silhouette sequences are

applied to object tracking, shape matching, 3D reconstruction, and
action classification.

In image template matching, it is easy to find which parts of the input
image are most similar to the template [34]. Each pixel in the output
image is rendered by using

O(u,v) = s(T, W) (3.15)
where T is the template, and W is the window centered at
(u,v) € R u,v € R, in the input image I. The function s(I,I,) is a
scalar measure that describes the similarity of two equally sized images
I, and I,. The difference between two images is the sum of absolute
differences (SADs) as shown in Eq. (3.16) or the sum of squared
differences (SSDs) as shown in Eq. (3.17). These metrics are zero if the
images are identical. The similarity NCC (Normalized Cross-Correlation)
is calculated by using Eq. (3.18).

_, Mi(z,y) — (=,) (3.16)

2
5= Z ,yel\Il(fc y) — I(z,y)| 3.17)

zy€111 z,y)-Iy(z,y)
T B S By

(3.18)

3.4 Image Morphology

Image morphology is concerned with the form or shape of visual objects
in an image (binary color) [8]. In morphological operations, eroded
image is marked in blue as shown in Fig. 3.5. If B (Green) is completely
contained by A (Red), the pixel is retained or else deleted.

14:% 1.1°1 1.4:°3 1 31 1 LI I I A I
1] 310 eeld 10301 & 1111000611110
122111111313 311311 1111006111180
1111131 1313131311 111111111118
1111111111111 6111111111118
I e U e e s 9 U 8 I s I | 8113133317191 80
1111113111111 1T 1 1111111111180
1111111111111) i 2 1111111131118
by e g e st R e el W T I 111111111118
1111111111111 1111111111186
1311131413333 1 8.1 L3 1A% 1,1 10T 9
1111111311111 - Hicm O T U B S s 50 o T S
111111131%11111 IB@BB@@B@BBB@@

Fig. 3.5 The erosion operation of images

In morphological operations [8], the dilated image is marked in blue.
Each pixel in A (red) with “1” will be superimposed with B (Green). All

pixels after superimposed with B (green) are encapsulated in the dilation
(blue) (Fig. 3.6).

L2 T I A L 1114 349 3§ 3151 1.4
11110061118 ¥ W i i 9 5 L I
1111001118 111131113111 11
@ 1211 1 13 1% @ 10243 3.1 3 349 3.1
2111111111¢@ 1 1 bt b s e o A 4 O
1100011118 2 g e 172 1.9 .4 F 199 4.:1
11000111180 11 3 1l Asdr 9y & el el
21100011110 1711133113111
1111111000 101 43 1.1 111 1.4
1111111000 111111111080
000000000080 11 11 3221 4°1 08

Fig. 3.6 The dilation operation of images

In morphological operations, the sequence of operations, namely
erosion then dilation, is known as opening. The sequence in the inverse
order, dilation and then erosion, is the closing procedure as shown in
Fig. 3.7.

(a) (b)

Fig. 3.7 The closing operation of images

Image skeletonization extracts the center line while preserving the
topology of visual objects, as shown in Fig. 3.8. Image transformation is
employed iteratively with a variety of structuring elements to conduct
operations such as skeletonization and linear feature detection.

(a) (b)
Fig. 3.8 The skeletonization operation of images
Image warping is a transformation of pixel coordinates as shown in
Fig. 3.9. Mathematically, the image warping is based on bilinear
interpolation. The interpolation as a whole is not linear but rather
quadratic in the sample location.

"‘OOQIQQI :
'40000:::::“0000:::

0 ‘:_:::o.... * o 5 IOSSSS]
s

A o’.”:

100 14 ""’1-

.""1

; +e L aas S el

*4ee 40004

28 :_*,_ - "0“
+e

250) 9‘0050"_:-

'9q 149004

300 444 a 1:"-’ +4 4

T T T T
50 100 150 200 250 300 350 400

Fig. 3.9 The warping operation of images

In image processing, bilinear interpolation [13] is employed to
resample images and textures. The algorithm is applied to map an image
pixel location to a corresponding point on the texture map. Assume we
have the four points (i.e., top-left point, bottom-left point, top-right point,
and bottom-right point) of image I;: Pr;, Ppr, Prgr, and P pg, and the
other image I has the corresponding points: P7.;, P5;, P, and P'gp.
Hence, the correspondences are established.

Pst =t- [8 : PTR—I— (]. — S) 'PBR] + (]. —t) : [8 : PTL + (1 — S) -PBL](3.19)
and
w=t[s Prp+(1—38) Pgpl+ (1 —1%)-[s-Pry+(1—3) Ppg](3.20)
where P and P/, are the corresponding points on the two images,
respectively, s € [0, 1], t € [0,1]. Thus, we render a pixel based on the
color of the other image. The corresponding pseudocode is shown in
Algorithm 10.

Algorithm 10: Bilinear interpolation for image pixel mapping
Input: Image 7 of size H x W, floating-point coordinate (x. y)
Output: Interpolated value v at (x, ¥)
1ifx<0orx=W—1lory<0Qory = H —1then

2 L return 0 ; // Out of bounds
// Compute integer neighbors

3 x; < |x], x < min(x;+1,W-—-1)

4y < |y], wm<mny+1.H-—1)
// Compute distances

S5dx «—x—xy, dy <« y—y

// Fetch pixel values
6 Q1 < Iyillxtl, Qo < Ilyillx2]
7 O < I[»llxl. O < Iy2]lx2]
// Interpolate horizontally
8 Rj <« Q11 -(1 —dx)+ Q21 -dx
9 Ry «— Q2 (1 —dx)+4+ Q2 -dx
// Interpolate vertically
10 v <— Ry - (1 —dy)+ Ry-dy
11 return v

3.5 Feature Extraction for Object Detection

and Recognition

In terms of visual features such as object size, position, and shape
related to robotics, all features could be written in vectors for computing
[10], and thus we have the following:

Bounding Box is the smallest rectangle that encloses the region and
the position of visual object. Intersection over Union (IoU), also known as
Jaccard index, is a metric to evaluate the accuracy of object detection
and recognition, as well as image segmentation algorithms by measuring
the overlap between predicted and ground truth regions.

Moment is a computationally cheap class of image features that
describe region size and location as well as shape in invariant way. In a
grayscale image with pixel intensity I(z,y), (z,y) € R?, raw image
moments M;; are calculated by

M;; = Zw Zywiyjl(:c,y) (3.21)

and g = , (Z,7) is the centroid, the central moments

My=) D) @D -D)) 3.2

The moments are well known for applications in image analysis, since
they are employed to derive invariants with respect to specific
transformations [14]. The invariance is that the shape of an object is
invariant to image operations such as image translation, image rotation,
and image scaling.

The typical examples of invariance are interest points and corners of
images. An interest point of image is the intersection of edges that has a
high gradient in orthogonal directions. Corners are computed from
image gradients and robust to offsets in illumination, and the structure is
invariant to the rotation of visual objects. Relative positions between
corners in the scenes should not change. Corners are invariant to
scaling, orientation, and distortions. They are robust and scarcely
affected in computer vision [19].

Hough transform estimates the direction of lines by fitting the lines to
the edge pixels [11]. There are numerous lines passing through that
point. If the points could vote for these lines [12], then each possible line
passing through the point would receive one vote [7]. In Fig. 3.10, the
distance is calculated from the origin to the straight line, and the slope is
calculated because the two lines are perpendicular. MATLAB provides
the Hough transform algorithm [15].

v
>

Ax+ By + C=0
|C]
VAZ + B2

p =ucos(a) +vsin(a)

v y
Fig. 3.10 Hough transform

Algorithm 11: Hough transform for line detection
Input: Edge image E
Output: Detected lines in (p, 0/) space

Initialize an accumulator array Alp, #] < 0
for each edge pixel (x,v) in E do
for & from 0 to 180° do
Compute p = x -cos(A) + v -sin(6)
Increment A[p. 0] < Alp.f8]+ 1

o e e b =

Find peaks in accumulator array A[p, 0]
for each peak in A above threshold do
L Add corresponding line (p, #) to the result set

- -B)

b

return Set of detected lines

Figure 3.11 shows the algorithm for line detection by using Hough
transform in the platform OpenCV. More generally, the Hough transform
algorithm for line detection is depicted in Algorithm 11. Figure 3.13
shows the algorithm for circle detection [7]. The source code in Python
for implementing the circle detection by using Hough transform is shown
in Fig. 3.12.

Hough Line Detection

Fig. 3.11 Line detection using Hough transform in OpenCV

import cv2

import numpy as np

import matplotlib.pyplot as plt
from google.colab import files

Step 1: Upload your image
uploaded = files.upload()

Step 2: Read the uploaded image (you can replace 'your_image.jpg' with the uploaded file name)
image_path = list(uploaded.keys())[@] # Get the uploaded image file name
image = cv2.imread(image_path)

Step 3: Convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Step 4: Apply Gaussian Blur to reduce noise and improve edge detection
blurred = cv2.GaussianBlur(gray, (9, 9), 2)

Step 5: Use Hough Circle Transform to detect circles
circles = cv2.HoughCircles(

blurred, # Input image (blurred grayscale)

cv2.HOUGH_GRADIENT, # Detection method

dp=1.2, # Inverse ratio of the accumulator resolution to the image resolution
minDist=30, # Minimum distance between detected centers

paraml=18@, # Upper threshold for Canny edge detection

param2=30, # Threshold for center detection

minRadius=15, # Minimum circle radius

maxRadius=100 # Maximum circle radius

)

Fig. 3.12 The source code in Python for circle detection using Hough transform in OpenCV

Detected Circles

Fig. 3.13 Circle detection using Hough transform in OpenCV

3.6 Image Processing with MATLAB

MATLAB image processing is a set of techniques for manipulating and
analyzing 2D images and 3D volumes [15]. It is employed in various
industries, such as photography, medicine, robotics, and remote sensing.
MATLAB Image Processing Toolbox assists us to enhance, filter, denoise,
register, and segment images and volumes with cloud computing

supports. MATLAB Online is cloud-based software, and it has no such
problems as system configurations, script files copying, and datasets
moving.

In binary images, image data is stored as logical matrix, and its values
0 and 1 are interpreted as colors black and white, respectively. In
indexed images, image data is stored as numeric matrix, and the
elements are direct indices in a color map. In grayscale images, image
data are stored as a numeric matrix, and its elements specify intensity
values. In true color images, image data are stored as numeric array
whose elements are from the intensity values of one of the three color
channels, i.e., red (R), green (G), and blue (B).

In multispectral images and hyperspectral images [1-6, 26], image
data is stored as an m X m X ¢ numeric array, where c is the number of
color channels. In labeled images, the image data are stored as the
numeric matrix of nonnegative integers.

Regarding image dilation in MATLAB, with respect to a binary image,
a pixel is set to 1 if any of the neighboring pixels have the value 1.
Pertaining to image erosion, in a binary image, a pixel is set to 0 if any of
the neighboring pixels have the value 0. In image opening, the opening
operation erodes an image and then dilates the eroded image by using
the same structuring element for both operations. In image closing, the
closing operation dilates an image and then erodes the dilated image by
using the same structuring element for both operations.

In MATLAB, camera calibration is the process of estimating camera
parameters by using images that contain a calibration pattern. The
camera parameters are applied to remove distortion effects from an
image, measure planar objects, reconstruct 3D scenes from multiple
cameras, etc. The steps for camera calibration in MATLAB include:

« Prepare camera and capture images for camera calibration [29].
« Add image pairs and select camera model.

« Calibrate multiple cameras.

« Evaluate the calibration results.

« Improve the calibration if necessary.

Export the camera parameters.

3.7 Lab Session: Implmenting Camera
Calibration with MATLAB

At the end of this chapter, we would like to recommend all readers
complete the lab report. Please fill in the form shown in Table 3.1 after
each lab session (2 hours).

Table 3.1 Lab report for robotic vision

Name

<First Name Last Name>

Email < firstname.lastname @mailbox >
Lab date <dd-mm-yy=>
Submitted date <dd-mm-yy>

Project title

Assessing and Enhancing Camera Calibration Accuracy

Lab objectives

The objective is to calculate the re-projection errors and the parameter
estimation errors

Configurations and
settings

<The preferences, software, hardware, platforms, tools, etc.>

Methods | <The relevant scientific theories or concepts >
Workflow <The step-by-step procedure for the experiment>
Datasets <The data and materials for your experiments>
Input <image filename, size, resolution >

Output <image filename, size, resolution>

Testing steps
Bugs or problems
Result analysis

<Functional & non-functional testing methods step by step>

| <The system error code, lines of the code>
| <The tables, graphs, and figures, etc.>

Conclusion/reflection | <The strengths and weaknesses, or learned from this project >

References https://au.mathworks.com/help/vision/ug/evaluating-the-accuracy-of-

single-camera-calibration.html

Appendix: <Source codes with comments and line numbers>
An example of this lab report is:

« Project title: Assessing and Enhancing Camera Calibration Accuracy

« Project objectives: (1) Plot the relative locations of the camera and
the calibration pattern. (2) Calculate the re-projection errors. (3)
Calculate the parameter estimation errors.

- Configurations and settings: (1) Modify calibration settings. (2)
Exclude images that have high re-projection errors and recalibrate. (3)
Modify calibration settings.

« Methods: Camera calibration is the process of estimating parameters
of the camera by using the images of a special calibration pattern. The
parameters include camera intrinsics, distortion coefficients, and
camera extrinsics. Once a camera is calibrated, there are multiple
ways to evaluate the accuracy of the estimated parameters: (1) Plot the
relative locations of the camera and the calibration pattern. (2)
Calculate the re-projection errors. (3) Calculate the parameter
estimation errors.

- Implementation steps:

1. Capture calibration images.

2. Detect calibration pattern.

3. Generate world coordinates.
4. Estimate camera parameters.
5. Evaluate calibration accuracy.
6. Re-projection errors.

7. Estimation errors.

8. Improve calibration.

. Testing steps:
1. Check Extrinsics: looking for logical camera and pattern positions

2. Analyze Re-projection Errors: ensuring errors; exclude images with
high errors

3. Review Estimation Errors: confirming errors within acceptable
limits

« Result analysis: We improve calibration accuracy; whether or not a
particular re-projection or estimation error is acceptable depends on
the precision requirements of particular application. (1) Modify
calibration settings. (2) Take more calibration images. (3) Exclude
images that have high re-projection errors and recalibrate.

« Conclusion/reflection: Accurate camera calibration is vital for
reliable measurements; regular evaluation and refinement ensure
precision in computer vision tasks.

« Readings: https://au.mathworks.com/help/vision/ug/evaluating-the-

accuracy-of-single-camera-calibration.html.

3.8 Exercises

Question 3.1 What is the relationship between camera calibration and
stereo vision?

https://au.mathworks.com/help/vision/ug/evaluating-the-accuracy-of-single-camera-calibration.html

Question 3.2 Why do we study image morphology?

Question 3.3 Why robots cannot always gather imperfect images from
the real world?

Question 3.4 Why Kalman filtering essentially is a linear algorithm?

Question 3.5 In camera calibration, how many images at least we need
to collect?

References

1.

2.

10.

11.

12.

Al-Sarayreha M (2020) Hyperspectral imaging and deep learning for food safety. PhD Thesis.
Auckland University of Technology, New Zealand

Al-Sarayreh M, Reis M, Yan W, Klette R (2017) Detection of adulteration in red meat species
using hyperspectral imaging. In: Pacific-rim symposium on image and video technology, pp
182-196

Al-Sarayreh M, Reis M, Yan W, Klette R (2018) Detection of red-meat adulteration by deep
spectral-spatial features in hyperspectral images. J Imag 4(5):63
[Crossref]

Al-Sarayreh M, Reis M, Yan W, Klette R (2019) Deep spectral-spatial features of snapshot
hyperspectral images for red-meat classification. In: International conference on image and
vision computing new Zealand

Al-Sarayreh M, Reis M, Yan W, Klette R (2019) A sequential CNN approach for foreign object
detection in hyperspectral images. In: International conference on computer analysis of
images and patterns, pp 271-283

Al-Sarayreha M, Reis M, Yan W, Klette R (2020) Potential of deep learning and snapshot
hyperspectral imaging for classification of species in meat. Food Control 117:107332
[Crossref]

Ballard DH (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern
Recog 13(2):111-122
[Crossref]

Boomgaard R, van Balen R (1992) Methods for fast morphological image transforms using
bitmapped binary images. Graph Models Image Process 54(3):252-258
[Crossref]

Canny JA (1986) Computational approach to edge detection, IEEE Trans Pattern Analy Mach
Intell 8(6):679-698
[Crossref]

Corke P (2017) Robotics, vision and control, 2nd edn. Springer Nature, Berlin
[Crossref]

Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in
pictures. Comm ACM 15:11-15
[Crossref]

Fernandes F, Oliveira M (2008) Real-time line detection through an improved Hough
transform voting scheme. Pattern Recogn 41(1):299-314

https://doi.org/10.3390/jimaging4050063
https://doi.org/10.1016/j.foodcont.2020.107332
https://doi.org/10.1016/0031-3203(81)90009-1
https://doi.org/10.1016/1049-9652(92)90055-3
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1007/978-3-319-54413-7
https://doi.org/10.1145/361237.361242

13.

14.
15.

16.
17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

[Crossref]

Foley van D (1996) Computer graphics: principles and practice, 2nd edn. Addison-Wesley,
Boston

Gonzalez R, Woods R (2001) Digital image processing. Prentice Hall, Upper Saddle River

Gonzalez R, Woods R, Eddins S (2020) Digital image processing using MATLAB. Gatesmark
Publishing, Knoxville

Haralick RM, Shapiro L (1992) Computer and robot vision. Addison-Wesley Longman, London

Harris C, Stephens M (1988) A combined corner and edge detector. In: Proceedings of the
4th Alvey vision conference, pp 147-151

Hu X (2017) Frequency based texture feature descriptors. PhD Thesis, Auckland University of
Technology, New Zealand

Klette R (2014) Concise computer vision: an introduction into theory and algorithms.
Springer-Verlag London, London
[Crossref]

Lindeberg T (1993) Detecting salient blob-like image structures and their scales with a scale-
space primal sketch: a method for focus-of-attention. Int J] Comput Vision 11(3):283-318
[Crossref]

Liu Z, Yan W, Yang B (2018) Image denoising based on a CNN model. In: International
conference on control, automation and robotics

Murphy R (2019) Introduction to Al robotics, 2nd edn. Bradford Books, Bradford

Pan C, Yan W (2018) A learning-based positive feedback in salient object detection. In:
International conference on image and vision computing New Zealand.

Pan C, Yan W (2020) Object detection based on saturation of visual perception. Multimedia
Tools Appl 79(27-28):19925-19944
[Crossref]

Pan C, Liu J, Yan W, Zhou Y (2021) Salient object detection based on visual perceptual
saturation and two-stream hybrid networks. IEEE Trans Image Process 30:4773-4787
[Crossref]

Reisa M, Beersd R, Al-Sarayreh R, Shortenb R, Yan W, Saeysd W (2018) Chemometrics and
hyperspectral imaging applied to assessment of chemical, textural and structural
characteristics of meat. Meat Sci 144:100-109

[Crossref]

Siegwart R, Nourbakhsh I, Scaramuzza D (2004) Introduction to autonomous mobile robots.
MIT Press, Cambridge

Wang Y, Yan W (2022) Colorising grayscale CT images of human lungs using deep learning
methods. Springer Multimedia Tools Appl 81:37805-37819
[Crossref]

Yan WQ (2019) Introduction to intelligent surveillance: surveillance data capture,
transmission, and analytics. Springer, Berlin
[Crossref]

Yan WQ (2023) Computational methods for deep learning: theory, algorithms, and
implementations, 2nd edn. Springer, Berlin
[Crossref]

https://doi.org/10.1016/j.patcog.2007.04.003
https://doi.org/10.1007/978-1-4471-6320-6
https://doi.org/10.1007/BF01469346
https://doi.org/10.1007/s11042-020-08866-x
https://doi.org/10.1109/TIP.2021.3074796
https://doi.org/10.1016/j.meatsci.2018.05.020
https://doi.org/10.1007/s11042-022-13062-0
https://doi.org/10.1007/978-3-030-10713-0
https://doi.org/10.1007/978-981-99-4823-9

31.

32.

33.

34.

Yan W, Kankanhalli M (2002) Detection and removal of lighting & shaking artifacts in home
videos. In: ACM international conference on multimedia, pp 107-116

Yan W, Kankanhalli M (2003) Colorizing infrared home videos. In: International conference
on multimedia and expo, pp 97-100

Yan W, Kankanhalli M, Wang J (2005) Analogies-based video editing. Multimedia Syst
11(1):3-18
[Crossref]

Zhao H, Xu S, Yan W, Xu D (2025) Design and optimization of target detection and 3D

localization models for intelligent muskmelon pollination robots. Horticulturae 11(8):905
[Crossref]

https://doi.org/10.1007/s00530-005-0186-3
https://doi.org/10.3390/horticulturae11080905

© The Author(s), under exclusive license to Springer Nature Singapore Pte
Ltd. 2026

W. Q. Yan, Robotic Vision, Advances in Computer Vision and Pattern
Recognition

https://doi.org/10.1007/978-981-95-4360-1_4

4. Stereo Vision and 3D
Reconstruction

Wei Qi Yan!

(1) Department of Computer and Information Sciences,
Auckland University of Technology, Auckland, New
Zealand

Abstract

Our living world is 3D naturally, and our human beings use
eyes to percept this world, which are equivalent to stereo
cameras in cyberspace. In this chapter, three concepts are
introduced with the fundamental knowledge: stereo camera,
stereo vision, and 3D reconstruction. Finally, the 3D scene
is constructed by using sensors to observe this environment.
The significance of this chapter is that we reconstruct the
3D scene and take advantage of stereo vision for probing
robotic view.

4.1 Stereo Camera and Stereo Vision

In this section, we see how cameras are applied to capture
images [31, 32], how 3D space is understood through these
images, how our human eyes watch the world, and how the
robots sense the environment using visual sensors [4].
Figure 4.1 shows a 3D stereo camera made by Fuji film.
The first digital camera was manufactured by Sony
Cooperation in 1981. It is called CCD camera, namely

https://doi.org/10.1007/978-981-95-4360-1_4

charge-coupled device. By using this digital camera, the key
function is to convert natural light to pixel signals. That is
the reason why CCD cameras can capture the image from
our real world. Then, it has been designed and made with
color accuracy. A right color is sensed with the CCD chips,
and it has no or has less coloring bias or mistakes.

Fig. 4.1 Fuji film stereo camera

Digital camera lens has not distortion problem. Like our
mobile phones, usually our photographs are taken with an
aspect ratio, usually 4:3 or 16:9. The aspect ratio is the ratio
between the width and the height of a given image [36].
This aspect ratio is closely related to image resolution.
Currently, a video resolution is 1,080 lines, which is the
standard 1K resolution. With the development of video
technology, we have 4K and 8K display technology because
the screen size is large enough. A large screen can display
images clearly. If the resolution is low, the details of images
will be lost. Previously, our TV sets are 18 inches or 24
inches, and up to date, most of them are more than 100
inches.

In color expression, the concept “bit depth” shows how
many bits are adopted to store the color values of one pixel.
A pixel color usually has 256 options, and the bit depth is 8,

i.e., 28 = 256. That means we have 256 colors to be shown

on an image concurrently. Thus, the bit depth indicates the
display capability of a screen [41].

Dynamic range refers to our cameras which can display
various colors in a short time. In one image, the colors may
be completely white; in another image, the colors may be
completely dark. Thus, no matter how an image is
completely white or dark [42], the dynamic range colors can
be displayed by using spectrum wave length.

A digital camera may have the functions: pan, tilt, and
zoom, and we call the camera as pan-tilt-zoom camera or
PTZ camera. Panning means the direction of our camera can
point from left to right or from right to left. Naturally, the
direction of our camera can scan up or down. In
surveillance, the cameras are automatically controlled by
using panning and zooming; zooming encapsulates zooming
in and zooming out. The functions of cameras are
implemented in hardware [40, 41].

Digital cameras can sense the colors ranging from the
visible wave length. Our human eyes cannot see infrared
rays and ultraviolet (UV) light. The images from the UV and
infrared rays can be visualized by using specific algorithms.
No matter which digital camera is utilized to take a
photograph, the central projection must be followed. If a
camera is utilized to take a photograph, the pixel location on
the image will have the corresponding point in 3D space. In
central projection,

.Xs .Ys
T, = fTs,yu: fZ 4.1)

where (X,,Y,,Z,)' € R3, X,,Y,,Z, € R, Z,#0, is a
visible point in the real world, namely 3D space.

(T, yu)T € R?, z,,vy, € R is the pixel location on the image,
correspondingly, and f € R is the focal length. X, € R and
Y, € R are symmetric, and in central projection, they are
the same.

If a camera has two lenses, this camera is called a stereo
camera. Usually, there are two images, one is the left

image, and the other is the right one as shown in Fig. 4.2.
The two images have identical size and parallel optic axes.
The two optic axes are pointed in the same direction. The
two coplanar images have the identical size, and the two
lenses in stereo camera have the parallel optic axes. The
angle between the two axes is zero. The two lenses have the
identical focal length. The two images have the collinear
image rows, which means the y coordinate of two
corresponding pixels in the two images should be the same.

(wuLayuL) — (fT)fsa foS) (4.2)
and
(qua yuR) — [f();i_b)) fzfs] (4.3)

where b € R is the base distance of the stereo system,

(X5, Ys, ZS)T is a visible point in the world, (zy, y.) is the
pixel location, (., y.r) for the pixel on the right image
and (x,r, yuR)T € R? for the pixel on the left image, and fis

the focal length. In 3D transformation, (X, Yy, Zw)T c R3
is the coordinates of a 3D point, and we have

(X5, Y5, Zs) " =R [(Xuw, Y, Zw) | + T] (4.4)
where R is the rotation matrix, and T is the translation

vector. A point (X, Yy, Zw)T in the 3D scene is projected
onto an image; it is visible at an image point

(z, y)T € R?, z,y € R in xy coordinate system.

T — Te Ty Xs /| Zs
Y—Yc = Yu — f : Ys / Zs (4.5)
f f 1

where (Z.,¥.,0) € R3, z.,y. € R, is the shift to principal
point in undistorted image.

Fig. 4.2 The stereo vision from stereo cameras

Intrinsic (internal) parameters enclose focal length,
aspect ratio, radial distortion parameters, scaling factors,
coordinates of the principal point, etc. Extrinsic parameters
encompass poses of camera [6], such as location and
direction. In camera calibration [2, 39, 42], epipolar
geometry indicates the two cameras with associated
coordinate frames and image planes. It represents the case
of two cameras simultaneously by viewing the same scene
[40]. In the epipolar plane, a world point is projected onto
the image planes of the two cameras at two pixel
coordinates, respectively, known as conjugate pixels. Given
a point in one image, the conjugate pixels are constrained to
lie along a line in the other image.

Stereo vision is employed for estimating 3D structure
from two images by using two different viewpoints with
approaches: sparse stereo and dense stereo [15]. Sparse
stereo is a natural extension about feature matching and
recovers the world coordinate for each corresponding point
pair. Dense stereo recovers the world coordinate for every
pixel in the image. A stereo pair is taken by using two
cameras, generally with parallel optical axes, and separated
by using a known distance referred to the camera baseline.
The camera baseline means that there is a distance between
the two cameras.

For the parallel-axis camera geometry, the epipolar lines
are parallel and horizontal, and the conjugate pixels have
the same vertical coordinate. The displacement along the

horizontal epipolar line is called disparity. The disparity is
an important concept in stereo vision [37]. The epipolar
constraint means that only 1D search is needed for the
corresponding point. Our search is limited in x-axis
direction with the fixed y. The design of a stereo vision
system [37] has three constraints: (1) baseline distance, (2)
disparity search range, and (3) template size.

In anaglyphs, human stereo perception of depth works
well because each eye views the scene from a unique
viewpoint. The key in all 3D display is to take the images
from two cameras, with a similar baseline to human eyes
and present those images to the corresponding eyes. The
advantage of anaglyphs is that the images can be printed on
paper or projected onto ordinary movie film, while being
viewed with simple and cheap glasses. Stereo cameras are
built accurately to ensure that the optical axes of the
cameras are parallel.

In robotic vision [10], a robot moves on a plane. A
particular feature point lies on the ground or the top of a
doorway, such as a vacuum robot. The view is upward [4,
29]. The magnitude of camera translational motion, at each
time, is estimated from essential matrix and the ground
truth. In a camera coordinate system, the unknown visible

point (X, Y5, ZS)T € R? is recovered by using the
undistorted image coordinates (£yz,y..) € R2,

TuL,Yul € R, and (gcuR,yuR)T € R?, 4R, yur € R as input,
where y,r. = Yur = Y € R and z,r < z,1, the base line
distance is b > 0, and f € R is the unified focal length.
Ultimately, we get the coordinates of a 3D point

(X,,Ys, Z,) " . Because
z, = £ _ S (4.6)

TyL ZTyR

therefore,
X, = _bzu . 4.7)

TyL—TyR !

Y, = 2L, (4.8)

yuLb_yu ?
Zs — ajuL;];uR (49)
T
T bz, by, b-f
(XS’ Ys’ ZS) o (afuL_;uR ? TyL—TuR ’ TuL—TuR) (410)

where d = x,;, — x,g # 0,d € R is the disparity, and b € R
is the base distance. In the camera coordinate system, we
recover unknown visible point by using

]
(Xo Vs, Z5) | = (g2, s, s20) (4.11)

TuL—TuR > TuL—TuR ’> TuL—TuR

Therefore, if d = x4z — z4r = 0, then (X, Y, Z)T is an
infinity point (o0). Larger b and f support an increase in
depth level but reduce the number of pixels that have
corresponding pixels in the second image. An increase in
image resolution is a way to improve the accuracy of depth
levels. Since the XY Z system can be transformed into the

(Xr,Y1, ZL)T € R® and (Xg, Yg, Zr) by translating
(X—2,Y,2) and (X+2,Y,2),

Xz cos (/) 0 sin(f) X-—2
Y, = 0 1 0 Y (4.12)
Zy —sin (f) 0 cos (0) Z
and
Xkg cos(d) 0 —sin() X+ 2%
Yp = 0 1 0 Y (4.13)
ZRr sin () 0 cos (0) A
Moreover,
Tyl = f'Z)iL,ZL +0
vur = L35 = yur, Zp # 0 (4.14)

X
LyR — fZRRazR 7£ 0

Stereo pairs are already geometrically rectified and
preprocessed for reducing brightness issues. Corresponding
pixels are expected to be in the left and right images at the
same image row. Regarding a pixel (z,y) € R? in a base
image B, we search for a corresponding pixel
(z +d,y),d € R, in the match image M, based on the same
epipolar line identified by row y. The two pixels are
corresponding if they are projections of the same point
(X,Y,Z)', where d > 0 is the disparity. We initiate a
search by selecting the point («,y) in B. This defines the
search interval of point (z + d,y) in M with
max (z — d, 1) < z + d. With regard to identify
corresponding points, a straightforward idea is to compare
neighborhoods, namely rectangular windows for simplicity,
such as 8 X 8 or 16 x 16 around a pixel p in the image 1.

« Global matching (GM): An area is approximated by using
time-expensive control structure of a stereo matcher.

« Local matching (LM): An area of influence is bounded by
using fixed constant.

« Semi-global matching: We take more pixels into account
than the local approach, but not yet as much as a global
approach.

The complexity of semi-global matching is between
global matching and local matching [38], The third-eye
method includes mapping a reference image of a pair of
stereo camera into the pose of a third camera, measuring
the similarity between created virtual image and the
actually recorded third image. The outline of the third-eye
method is as follows:

. Record stereo data with two cameras, and calculate
disparities.

« Have a third calibrated camera looking into the same
space as the other two cameras [13].

« Use the calculated disparities for mapping the recorded
image of the left camera into the image plane of the third
camera, and create a virtual image.

« Compare the virtual image with the image recorded by
using the third camera.

o If the virtual images from the third camera basically
coincide, then the stereo matcher provides “useful”
disparities [13].

By using the third-eye method, the disparity map and the
depth map of the given scene are calculated and shown in

Algorithm 12.

Algorithm 12: The third-eye stereo vision algorithm
for depth estimation

Input: Rectified images 17, I¢, Iy (left, center, right), camera calibration
parameters

Output: Disparity map D, depth map Z

1 foreach pixel (x, y) in Ic do

2 for disparity d € |dmin. dmax| do

3 Compute matching cost Cp <« cost({c(x, v), Ip(x —d, v));

4 Compute matching cost Cp < cost(Ic(x, v), Ig(x + d, v)):

5 Aggregate cost: C(d) <— wy - Cp + wg - Cg;

6 Find disparity: d* <— arg ming C(d);
7 Set D(x, y) < d*:
8 Compute depth map: Z(x, y) < D{:;B\-);

9 return D, Z;

A point (X,Y,Z)' € R® mapped into a pixel (z,y)' € R?in
the left image corresponds to a point (z7,yr) € RZ,
z7,yr € R in the third image, and (z7, yr) is expressed in
terms of (z, y) by using the calibrated translation
(tx,ty,tz)T € R3, tx,ty,tz; € R[11]. The base distance

b € R, the focal length fr € R, and the disparity d > 0 are
provided by using the given stereo matcher:

(X0, Y, Z7) = (X —tx,Y —ty, Z —ty5)' (4.15)

and
(wT7yT):fT'(§_§7}Zf_§)7ZT7éO (4.16)
Therefore,
(ar,yr) = fr- (372,572), 2 £ 1 (4.17)
fFX=2t2 y=24 7= f: gd,tdﬂ, then
rr = T Foars (4.18)
and
by—d-
yr = fr- S (4.19)

where f-b—d-tz # 0.

Let £2; € R be the set of pixels that are employed for the
comparison with regard to video frames at time t € R. The
means are py and pur, respectively, and the standard
variations are oy and o7 for the virtual V(p) and the third
image T'(p) at time t, respectively. Hence, the Normalized
Cross-Correlation (NCC) is calculated as shown in Eq.
(4.20). The NCC is employed to compare the performance of
stereo matches based on long sequences.

T(p)—pr][V(p)—
Myce(V,T) = |5t| Zpeﬂt [T(p)—pr][V(P)—pv] (4.20)

o0y

4.2 3D Reconstruction

The surface S is known as border of the existing 3D object
in the real world; we usually have two kinds of gap-free
smooth surfaces: (1) Continuous derivatives exist and (2)
the existence of a neighborhood in S. The typical one is the
Mobius strip as shown in Fig. 4.3, and the derivatives exist
everywhere.

Fig. 4.3 The smooth surface: Mobius strip

Gap-free polyhedral surfaces have two groups: (1)
discontinuities at edges and (2) the existence of a
neighborhood in S. The typical one is the tetrahedron. The
explicit representation of function F(-) is Z = F(X,Y),
X,Y,Z € R. The equation of a straight line is y = ax + b,
a,b € R. The implicit representation is F(X,Y, Z) = 0, for
the straight line, and the equation is Ax + By + C = 0,
A, B,C € R. The gradient of a surface Z = F(X,Y) is the

vector given by

VZ =grad(Z) = (2%, %) (4.21)
In the case of plane a X + bY + Z = ¢,
n= (22, 9 1)" — (g,b,1)7 (4.22)

The normalized vector is

nO:(nnn)T: n__ _(abl) (4.23)
1, M2, N3 Ml — Ve |
Let P = (a,b,1) ' be the surface normal vector of a
visible and illuminated surface at point P
s'np
= — 4.24
08 & = s alln, 2 *-29

On one surface [7], there are numerous norm vectors.

The emitted light at the point P is scaled by
n(P) = p(P) - % (4.25)
where E;, € R was defined as a light source energy, which
is reflected at P uniformly into all directions of a
hemisphere.
_ s'np

R(P) = 1(P) e, (4.26)
where R(P) > 0 is the reflectance function.

Lambert’s cosine law is employed to render a geometric
model as shown in Fig. 4.4. In this law, only norms are
considered in this model [8]. There are two kinds of
surfaces, i.e., mirror surface and rough surface. These
surfaces are related to surface materials. The source code in
Python for generating Fig. 4.4 is shown in Fig. 4.5. The
corresponding pseudocode is shown in Algorithm 13.

Fig. 4.4 A sphere rendered by using Lambert cosine law in Python

import numpy as np
import matplotlib.pyplot as plt

Define the sphere's parameters

radius = 1.0 # Sphere radius

light_dir = np.array([@, @, 1]1) # Direction of the light (from z-axis)

light_dir = light_dir / np.linalg.norm(light_dir) # Normalize the light direction

Create a grid of points representing the sphere's surface
theta = np.linspace(®, np.pi, 10@) # Polar angle

phi = np.linspace(@, 2 * np.pi, 10@) # Azimuthal angle
theta, phi = np.meshgrid(theta, phi)

Convert spherical coordinates to Cartesian coordinates
radius * np.sin(theta) * np.cos(phi)

radius * np.sin(theta) * np.sin(phi)

radius * np.cos(theta)

#
X
y
z

Calculate normals at each point on the sphere's surface
normals = np.stack((x, y, z), axis=-1)
normals = normals / np.linalg.norm(normals, axis=-1, keepdims=True)

Apply Lambert's Cosine Law: intensity = max(@, normal - light_dir
intensity = np.maximum(@, np.sum(normals * light_dir, axis=-1))

Plot the sphere with intensity values as colors

fig = plt.figure(figsize=(8, 8))

ax = fig.add_subplot(111, projection='3d"')

ax.plot_surface(x, y, z, facecolors=plt.cm.viridis(intensity), rstride=1, cstride=1, linewidth=0, antialiased=False)
Adjust plot appearance

ax.set_box_aspect([1, 1, 1]) # Equal aspect ratio

ax.set_axis_off() # Turn off axis lines
plt.show()

Fig. 4.5 The source code of Lambert cosine law in Python
For an example, if the light color is C = (255, 255, 255),
computing with Lambert’s cosine law, o = %, the

reflectance Cr = C- cos (%) is obtained. The light intensity
is Cp = (127.5,127.5,127.5) if 5(P) = 1.0.

Algorithm 13: Lambertian reflectance for diffuse
shading

Input: Surface normal vector , light direction vector , light intensity 1,
diffuse color Cy
Output: Diffuse shading color C

Normalize the surface normal: < T

Normalize the light direction: < it
Compute dot product: D <« -;

Clamp to non-negative: D < max(0, D);
Compute final color: C < I - Cy - D;
return C';

=LY | B S VU R S R

4.3 Applications of Stereo Vision

Stereo vision plays a crucial role in robotic navigation[16],
robotic planning, and scene understanding, offering depth
perception and 3D spatial awareness [46]. The applications
in these fields are listed as below.

4.3.1 Applications of Robot Navigation

Stereo vision [30, 31] provides depth information that helps
robots deeply understand the environment, make plans,
design routines, and navigate effectively. The key
applications include:

In obstacle avoidance, robots can detect obstacles and
estimate their distance, allowing for real-time path planning
in cluttered environment [28]. If a map has been generated,
the obstacle avoidance is assumed to be relatively easy. By
using localization and mapping (SLAM), stereo cameras
contribute to 3D map generation and aid autonomous
navigation. In outdoor environments, based on scene
understanding, for example, stereo vision assists us to
estimate road surface for safe travel.

In stereo vision [31-34], the problem is human-robot
interaction, it needs to detect humans actions and their
movements, and it enables the interaction in shared spaces.
The principle of human-robot interaction (HRI) revolves the

designing issues that can effectively and safely collaborate
with humans.

4.3.2 Applications in Deep Scene
Understanding

The interfaces of ChatGPT (OpenAl) and Gemini (Google)
have extremely attracted our eyeballs. In the latest design,
how to make use of chatbot software to control robots is an
interesting research direction. In scene understanding, the
stereo vision will set a knowledge base, and it conveys
robots what the environment is and how can set up such a
conversion environment by using chatbots such as Gemini
or ChatGPT. The corresponding Chain-of-Thought (CoT) is
established. The outputs of chatbots could be filtered and
utilized to control agents. Furthermore, the unknown world
will be explored and understood by using conversations.
Figure 4.6 shows the interface of Google Gemini. From
Google image search, we obtain the results as shown in Fig.
4.7. This example shows chatbots have the ability to explore
much broader content based on visual information, while
search engines could not completely understand the
assigned tasks.

Do you think whether this person is v
Wei Qi Yan?

+ Based on the search results and the image you provided, it is
highly likely that this person is Wei Qi Yan.

Fig. 4.6 The interface of chatbot: Google Gemini

& |Add to your search X & @ Q
Al Products Homework Visual matches Exactmatches About this image Feedback

@ Results for people are limited

Related search

Wei Qi Yan a
-

@ AUT

Associate Professor Wei Qi Yan
- AUT News - AUT

@ AUT
Wei Qi Yan | Moku | About |
Auckland University of...

See exact matches & >

@ SAI Conferences
Weiqi Yan

R* ResearchGate

Weiqgi YAN | Associate Professor
| PhD | Auckland University of...

Fig. 4.7 The interface of Google image search

Chatbots are distinctive from soft robots [5, 35, 43]. Soft
robotics, inspired by biology [12], concerns the design,
control, and fabrication of robots composed of compliant
materials [14]. The goal of soft robotics is the design and
construction of robots with physically flexible bodies and
electronics. All soft robots facilitate an actuation system to
generate reaction forces, and it is admitted for movement
and interaction with its environment. Soft robots are much
safer for human and robot interaction and for internal
deployment inside a human body [1, 3] for medical
applications [44, 45].

4.3.3 Applications in Visual Object Recognition
Stereo vision enhances visual object recognition by
providing 3D shape and depth information [9], improving
accuracy over 2D image processing from all aspects or
multiple views. The basic applications should include 3D
object detection and recognition [17-20]. The depth assists
us to differentiate objects from the background and classify
them more reliably [21-23]. An example of 3D vehicle scene
[24-27] is shown in Fig. 4.8.

Fig. 4.8 The scene of 3D vehicles with depth

Another application is robotic path planning, grasping,
and manipulation [28]. Robots make use of stereo vision to
estimate visual distance, position, and shape for accurate
pick-and-place tasks. In autonomous vehicles, stereo vision
is applied to detect pedestrians, vehicles, and road
obstacles outside of the moving robots.

In augmented reality and robotics [31-34], stereo vision
transfers human experience and spatial understanding to
interactive AR/VR applications in real time with the
unknown world. By merging with 3D animations having the
same view angle, robotic vision will combine the real world
and virtual one together.

4.4 Lab Session: Implementing Stereo
Vision Systems with MATLAB

At the end of this chapter, we would like to recommend all
readers complete the lab report. Please fill in the form
shown in Table 4.1 after each lab session (2 hours). An
example of this lab report is:

- Project title: Depth Estimation from Stereo Video

Table 4.1 Lab report for robotic vision

Name <First Name Last Name>
Email <firstname.lastname @mailbox >
Lab date | <dd-mm-yy>

Submitted date | <dd-mm-yy>

Project title
Lab objectives

Configurations and
settings

Methods

Workflow

Datasets

Input

Output

Testing steps

Bugs or problems
Result analysis
Conclusion/reflection
References

| Depth Estimation from Stereo Video

The objective is to detect people and the distance to the camera

from a video with a calibrated stereo camera

<The preferences, software, hardware, platforms, tools, etc.>

<The relevant scientific theories or concepts >

| <The step-by-step procedure for the experiment>

<The data and materials for your experiments>

<image filename, size, resolution >

<image filename, size, resolution>
<Functional & non-functional testing methods step by step>

| <The system error code, lines of the code>

<The tables, graphs, and figures, etc.>

| <The strengths and weaknesses, or learned from this project >

https://au.mathworks.com/help/vision/ug/evaluating- the-accuracy- of-

single-camera-calibration.html

Appendix: <Source codes with comments and line
numbers>

Project objectives: The objective is to detect people and
the distance to the camera from a video taken with a
calibrated stereo camera.

Configurations and settings: MATLAB Online
Methods: Use of disparity map to determine 3D core
coordinates corresponding to each pixel.
Implementation steps:

1. Stereo Camera Setup: Calibrate the camera pair.

2. Rectify Video Frames: Correct video frames for
parallel alignment.

3. Compute Disparity Map: Calculate pixel disparities.
4. 3D Reconstruction: Reconstruct the scene in 3D.

5. Object Detection and Recognition: Identify objects
and measure distances.

Testing steps:

1. Load the parameters of the stereo camera.

2. Create video file readers and the video player.
3. Read and rectify video frames.

4. Compute disparity.

5. Reconstruct the 3D scene.

6. Detect people in the left image.
7. Determine the distance of each person to the camera.
8. Process the rest of the video.

« Result analysis: (1) Accuracy: The system accurately
estimates depth based on the quality of the disparity map.
(2) 3D Reconstruction: The 3D scene reconstruction
closely matches the real scene. (3) Object Detection and
Recognition: The system reliably detects objects and
measures distances. (4) Performance: The system’s
robustness varies under various conditions (lighting,
camera angles, and textures).

« Conclusion/reflection: The project demonstrates
effective depth estimation, though performance may vary
based on environmental factors.

« Readings:

https://au.mathworks.com/help/vision/ug/depth-

estimation-from-stereo-video.html

4.5 Exercises
Question 4.1 How to accelerate stereo matching?

Question 4.2 What are the differences by using LiDAR
and computer vision for 3D reconstruction?

Question 4.3 What is image disparity? How to calculate
the disparity?

Question 4.4 In Lambert cosine model, how can we make
the algorithm more perfect?

https://au.mathworks.com/help/vision/ug/depth-estimation-from-stereo-video.html

Question 4.5 What are the relationships between
computer graphics and computer vision?

Question 4.6 How to verify the depth available from the
3D reconstruction in stereo Vision?

References

1. Abidi H, Cianchetti M (2017) On intrinsic safety of soft robots. Frontiers in
Robotics and Al 4.

2.
Chen Z, Si X, Wu D, Tian F, Zheng Z, Li R (2024) A novel camera calibration

method based on known rotations and translations. Comput Vision Image
Understand 243:103996
[Crossref]

Cianchetti M, Ranzani T, Gerboni G et al (2014) Soft robotics technologies
to address shortcomings in today’s minimally invasive surgery: the STIFF-
FLOP approach. Soft Rob. 1(2):122-131

[Crossref]

Corke P (2017) Robotics, vision and control, 2nd edn. Springer Nature,
Berlin
[Crossref]

Crawford M (2019) Soft robots are essential for future space exploration.
American Society of Mechanical Engineers (ASME), New York City

Ding W, Tan W, Liu G, Zhang H, Wang W (2024) Adaptive adjustment of
brightness and blur of the camera for high precision internal parameter
calibration. Measurement 231:114637

[Crossref]

Foley van D (1996) Computer graphics: principles and practice, 2nd edn.
Addison-Wesley, Boston

Gonzalez R, Woods R, Eddins S (2020) Digital image processing using
MATLAB. Gatesmark Publishing, Knoxville

Gu Q, Yang J, Kong L, Yan W, Klette R (2017) Embedded and real-time
vehicle detection system for challenging on-road scenes. Opt Eng
56(6):063102

[Crossref]

10.
Haralick RM, Shapiro L (1992) Computer and robot vision. Addison-Wesley

Longman Publishing, London

https://doi.org/10.1016/j.cviu.2024.103996
https://doi.org/10.1089/soro.2014.0001
https://doi.org/10.1007/978-3-319-54413-7
https://doi.org/10.1016/j.measurement.2024.114637
https://doi.org/10.1117/1.OE.56.6.063102

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Huang W, Miao H, Jiao S, Miao W, Xiao C, Wang Y (2024) A planar
constraint optimization method to improve camera calibration for imperfect
planar targets. Opt Lasers Eng 180:108273

[Crossref]

Kim S, Laschi C, Trimmer B (2013) Soft robotics: a bio-inspired evolution in
robotics. Trends Biotechnol 31(5):287-294
[Crossref]

Klette R (2014) Concise computer vision: an introduction into theory and
algorithms. Springer-Verlag London, London
[Crossref]

Laschi C, Calisti M (2021) Soft robot reaches the deepest part of the ocean.
Nature 591(7848):35-36
[Crossref]

Lazaros N, Sirakoulis G, Gasteratos A (2008) Review of stereo vision
algorithms: From software to hardware. Int] Optomechatr 2(4):435-462
[Crossref]

Le R (2022) Synthetic data annotation for enhancing the experiences of
augmented reality application based on machine learning, PhD Thesis.
Auckland University of Technology, New Zealand

Liu X (2019) Vehicle-related scene understanding using deep learning.
Master’s Thesis, Auckland University of Technology, New Zealand

Liu X, Nguyen M, Yan W (2019) Vehicle-related scene understanding using
deep learning. In: Asian conference on pattern recognition workshop, pp 61-
73

Liu X, Yan W, Kasabov N (2020) Vehicle-related scene segmentation using
CapsNets. In: International conference on image and vision computing New
Zealand, pp 1-6

Liu X, Yan W (2022) Depth estimation of traffic scenes from image sequence
using deep learning. In: Pacific-rim symposium on image and video
technology, pp 186-196

Liu X, Yan W (2022) Vehicle-related distance estimation using customized
YOLOV7. In: International conference on image and vision computing New
Zealand (IVCNZ), pp 91-103

Liu X, Yan W, Kasabov N (2023) Moving vehicle tracking and scene
understanding: a hybrid approach. Multimedia Tools Appl 83:51541-51558
[Crossref]

https://doi.org/10.1016/j.optlaseng.2024.108273
https://doi.org/10.1016/j.tibtech.2013.03.002
https://doi.org/10.1007/978-1-4471-6320-6
https://doi.org/10.1038/d41586-021-00489-y
https://doi.org/10.1080/15599610802438680
https://doi.org/10.1007/s11042-023-17618-6

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Liu X, Yan W (2024) Vehicle detection and distance estimation using
improved YOLOvV7 model. In: Deep learning, reinforcement learning and the
rise of intelligent systems. IGI Global, Hershey, pp 173-187

Mehtab S (2022) Deep neural networks for road scene perception in
autonomous vehicles using LiDARs and vision sensors. PhD Thesis,
Auckland University of Technology, New Zealand

Mehtab S, Yan W (2021) FlexiNet: fast and accurate vehicle detection for
autonomous vehicles-2D vehicle detection using deep neural network. In:
International conference on control and computer vision, pp 43-49

Mehtab S, Yan W (2022) Flexible neural network for fast and accurate road
scene perception. Multimedia Tools Appl 81:7169-7181
[Crossref]

Mehtab S, Yan W, Narayanan A (2022) 3D vehicle detection using cheap
LiDAR and camera sensors. In: International conference on image and vision
computing New Zealand

Ming Y, LiY, Zhang Z, Yan W (2021) A survey of path planning algorithms
for autonomous vehicles. In: International journal of commercial vehicles

Murphy R (2019) Introduction to Al robotics, 2nd edn. Bradford Books,
Bradford

Nguyen M, Yan W, Gong R, Delmas P (2015) Toward a real-time belief
propagation stereo reconstruction for computers, robots, and beyond. In:

International conference on image and vision computing New Zealand
(IVCNZ)

Nguyen M, Le R, Yan W (2017) A personalized stereoscopic 3D gallery with
virtual reality technology on smartphone. In: International conference on
image and vision computing New Zealand (IVCNZ)

Nguyen M, Le H, Yan W, Dawda A (2018) A vision aid for the visually
impaired using commodity dual-rear-camera smartphones. In: International
conference on mechatronics and machine vision

Nguyen M, Lai P, Le R, Yan W (2019) A web-based augmented reality
platform using pictorial QR code for educational purposes and beyond. In:
ACM symposium on virtual reality software and technology

Nguyen M, Le R, Yan W (2020) Red-green-blue augmented reality tags for
retail stores. In: International conference on advanced concepts for
intelligent vision systems

Rus D, Tolley M (2015) Design, fabrication and control of soft robots.
Nature 521(7553):467-475

https://doi.org/10.1007/s11042-022-11933-0

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

[Crossref]

Siegwart R, Nourbakhsh I, Scaramuzza D (2004) Introduction to
autonomous mobile robots. MIT Press, Cambridge

Steinman S, Steinman B, Garzia R (2000) Foundations of binocular vision: a
clinical perspective. McGraw-Hill Medical, Columbus

Tychola KA, Tsimperidis I, Papakostas GA (2022) On 3D reconstruction
using RGB-D cameras. Digital 2(3):401-421
[Crossref]

Wang J, Wan Y (2018) A new camera calibration method based on two
vertical lines. In: International conference on communications, circuits and
systems (ICCCAS), pp 399-402

Yan WQ (2019) Introduction to intelligent surveillance: surveillance data
capture, transmission, and analytics, 3rd edn. Springer, Berlin
[Crossref]

Yan WQ (2023) Computational methods for deep learning: theory,
algorithms, and implementations, 2nd edn. Springer, Berlin
[Crossref]

Yan W, Kankanhalli M (2002) Detection and removal of lighting & shaking
artifacts in home videos. In: ACM international conference on multimedia,
pp 107-116

Yasa O, Toshimitsu Y, Michelis M, Jones L, Filippi M, Buchner T,
Katzschmann R (2023) An overview of soft robotics. Ann Rev Control Rob
Auton Syst 6(1):1-29

[Crossref]

Younas F, Usman M, Yan W (2022) A deep neural network ensemble
framework for colorectal polyp classification. Multimedia Tools Appl
82:18925-18946

[Crossref]

Younas F, Usman A, Yan W (2022) A deep ensemble learning method for
colorectal polyp classification with optimized network parameters. Appl
Intell 53:2410-2433

[Crossref]

Zhao H, Xu S, Yan W, Xu D (2025) Design and optimization of target
detection and 3D localization models for intelligent muskmelon pollination
robots. Horticulturae 11(8):905

[Crossref]

https://doi.org/10.1038/nature14543
https://doi.org/10.3390/digital2030022
https://doi.org/10.1007/978-3-030-10713-0
https://doi.org/10.1007/978-981-99-4823-9
https://doi.org/10.1146/annurev-control-062322-100607
https://doi.org/10.1007/s11042-022-14177-0
https://doi.org/10.1007/s10489-022-03689-9
https://doi.org/10.3390/horticulturae11080905

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2026
W. Q. Yan, Robotic Vision, Advances in Computer Vision and Pattern Recognition
https://doi.org/10.1007/978-981-95-4360-1_5

5. Deep Learning for Robotic
Vision

Wei Qi Yan!
(1) Department of Computer and Information Sciences,
Auckland University of Technology, Auckland, New Zealand

Abstract

Deep learning is related to a series of the state-of-the-art
methods in contemporary artificial intelligence. In this chapter,
our deep learning methods mainly include CNN and RNN
models. In CNN models, YOLO models are especially
emphasized, while in RNN models, we stress on transformer
models for time series analysis along with LSTM. The
transformer models are still large, active, and effective in our
research projects, especially the diffusion transformer models
for generative Al (GenAl). In this chapter, our focus is on vision
transformer (ViT) for robotic scene understanding. The
significance of this chapter is that the state-of-the-art knowledge
in deep learning is mingled with the knowledge of robotic vision
for developing autonomous systems.

5.1 Overview of Deep Learning

Architectures for Vision

Deep learning offers a new way for exploring robotic vision by
using the state-of-the-art (SOTA) models such as YOLO series
and transformer models [G61]. The robotic vision is not limited to
object detection and recognition and object tracking. The moving
cameras mounted on mobile robots are able to freely select
viewpoints and sense much broader world. Hence, robots are

https://doi.org/10.1007/978-981-95-4360-1_5

able to understand holistic scenes naturally. The latest
developed chatbots such as ChatGPT (OpenAl), DeepSeek
(DeepSeek), Gemini (Google), Copilot (Microsoft), Qwen
(Alibaba), etc. are beyond the limitations. They inspire deep
scene understanding based on visual data.

Therefore, YOLO models and transformer models only
accommodate visual information and knowledge for chatbots.
We thus fuse visual information and knowledge for deep scene
understanding. The cameras on tripods only capture a limited
scene from one view. Hence, we need to move tripods and
cameras back and forth for capturing holistic view. Thus, the
cameras on mobile robots overcome these shortcomings, and
they are able to deeply understand much wider field of view
(FoV).

The chain of thought (CoT) is a method that allows large
language models (LLMs) to resolve a complicated problem as a
series of intermediate steps before offering the final answer
[49]. The CoT method improves reasoning ability by inducing the
model to answer a multistep question with a series of steps of
reasoning. Tree of thoughts (ToT) generalizes the CoT to
generate one or more “possible next steps” and executes the
model on each of the possible steps by using breadth-first search
[53] or other methods of tree search.

Dify (https://docs.dify.ai/) is an open-source platform for
docking Al applications to streamline the development of
generative Al solutions. Dify can create innovative Al
applications that solve CoT problems. ComfyUI (www.comfy.orq)
is an open-source and node-based program to generate images
from a series of text prompts. It makes use of free diffusion
models [13] as the base with each tool being represented by
using a node. Each node has a function. The function can be
applied to calculate the confidence score of LLM outputs, hence
controlling the ethics problems. ComfyUI supports multiple text-
to-image models.

Ollama, short for Omni-Layer Learning Language Acquisition
Model, is a cutting-edge platform designed to simplify the
process of running large language models (LLMs) on local
machines. The transcripts generated from deep learning and
computer vision models, such as YOLO models and transformer

https://docs.dify.ai/
http://www.comfy.org/

models, will be added into the Ollama for conversation. In the
initialization stage, a group of designated prompts will assist the
system to avoid any problems related to ethics.

The LLM interface, like OpenAl ChatGPT, Google Gemini, and
Microsoft Copilot, escapes the simple phrase matching, and it
also avoids the difficulties of Google search without proper
keywords. The chatbot systems, like Qwen and DeepSeek,
accommodate a solution for answering questions and reasoning
the information from deep scene understanding from knowledge
base.

Retrieval-Augmented Generation (RAG) is a method that
allows large language models (LLMs) to retrieve and incorporate
additional information before generating responses [27], and it
minimizes the hallucination problem. RAG allows LLMs for
information indexing, information retrieval, information
augmentation, and new information generation. RAG can be
simply deployed and integrated with open-source models such as
DeepSeek and Ollama on web pages. Furthermore, RAG can
lower the computational costs for running LLM-powered
chatbots.

5.2 Convolutional Neural Networks

(CNNs) and YOLO Models

5.2.1 CNN Models

OpenAl ChatGPT was developed based on transformer models.
GPT means generative pretrained transformer. “T” refers to
transformer. In this chapter, we emphasize on Vision
Transformer (ViT) and Diffusion Transformer (DiT) [20].

Deep learning is a type of machine learning approaches in
which a deep learning model is trained to perform pattern
classification from the end-to-end point of view. In deep truth,
deep learning is a probability-based classification method, and
its performance has surpassed our human’s ability [41]. Deep
learning is usually implemented by using neural network
architecture. Previous artificial neural networks are neurons-
based, which were fully connected networks; now the neural
networks are layer-based. The multiple layer networks are called

deep neural networks or deep nets. The term “deep” refers to
the number of layers in the layered neural networks, while the
simple neural networks with few number of layers are called
“shallow” nets.

Conventional neural networks or ConvNets contain only a few
layers; now deep learning or deep nets can have more and many.
The state-of-the-art (SOTA) methods are to access massive sets
of labeled data [3]. Because there are sufficient labeled datasets,
deep learning algorithms are easy to implement. Another reason
is the increased computing power (e.g., GPU, FPGA, etc.). GPU
is a hardware unit for graphics processing, e.g., NVIDIA GPUs.
In matrix multiplications and vector computations, GPUs
accelerate the computations by operating on the corresponding
elements simultaneously. Parallel computing accelerates
arithmetic operations in infrastructure. A famous demo is that
the picture Mona Lisa was displayed on a big screen within 1
second by using GPU computing. Pretrained models were
created by experts. Transfer learning [34] transfers parameters
from one model to another [32]. With more data samples to be
added, the deep learning models will be better regarding
precision and recall in pattern classifications.

In deep learning, the end-to-end methods have been adopted.
The feature map from convolution and pooling operations with
hierarchical structure has been utilized. Softmax function has
been deployed to the final stage of the classification. The
classification is based on probabilities; the one with the highest
probability is selected as the output of this net.

esi

O'(Z),L = Zilezj (51)

where o € [0,1]" is the softmax function,

z = (21,29, ,zK)T € RX is the input vector, e* is the
standard exponential function for input vector, and K € N is the
number of classes in multiclass classifier.

Convolution operations and pooling operations are employed
to extract features in deep learning [21, 25]. We have the terms
related to deep learning [22, 24]:

« Convolution puts the input through a set of convolutional
filters [21].

« Pooling simplifies the output through nonlinear downsampling
to reduce the number of parameters that the network needs to
be trained.

« ReLU (Rectified Linear Unit) is associated with fast and
effective training by mapping negative values to zero and
maintaining positive ones.

A fully connected layer (FC) outputs a vector of k dimensions
where Kk is the number of classes that the deep net is able to
predict. The vector contains the probabilities for each class of
any images being classified. The final layer of CNN architecture
makes use of a softmax function to generate the classification
output. ConvNets are inspired from the biological structure of a
visual cortex or human vision system, and it contains
arrangements of simple and complex neurons. In order to
simulate a neuron, there is an activation function between input
and output of each neuron. The input and output of the neuron
may be a scalar or a vector. The transfer function is the
composition of activation functions by using the output of the
last layer as the input of the next layer in deep nets.

Deep learning work was awarded Nobel Prize in Physics.
Professor Geoffrey Hinton received the ACM Turing Award 2018
in 2019 and Novel Prize in Physics in 2024. This work simulated
the mechanism of human visual system. A light ray travels and
passes through our iris and left the impression on our retina.
These cells are stimulated based on the subregions of a visual
field, i.e., receptive field. Receptive field is a region of the
original image corresponding to a pixel on the feature map. Our
left eye is linked to right half brain; meanwhile, our right eye is
connected to the left half brain.

Feature map is the output of convolution operations in
hierarchical structure [21]. A ConvNet reduces a number of
parameters with the number of connections and shared weights.
A ConvNet consists of multiple layers, such as convolutional
layers, max pooling layers or average pooling layers, and fully
connected layers [21].

The input layer defines the size of inputs of a convolutional
neural network and contains raw values of the input. Among all
deep learning models, we have visible layer (input layer or

output layer), invisible layers, or latent layers. A convolutional
layer consists of neurons that connect to subregions of the
inputs or the outputs of the layer; it extracts the features
localized by these regions. A set of weights is related to a filter
or a kernel, and the filter moves along the input image vertically
and horizontally and repeats the same computation. Batch
normalization normalizes the activation and gradients
propagating through a neural network, and it makes network
training as an easier optimization problem [11, 28]. Basically, it
refers to normalization of output between 0 and 1 [23]. In the
context of artificial neural networks [16, 30], a ReLU function is
a typical activation function [11]. The ReLU function performs a
threshold operation to each element.

x x>0,

y =max (z,0) = {O 2 <0 (5.2)

where x,y € R, x is the input to a neuron, and y is the output.

Leaky ReLUs have a small and positive gradient [28] when
the unit is not active. A leaky ReLU layer multiplies input values,
and it allows negative inputs to “leak” into the output.

x x>0,
y =max (a-z,0) = a- max (z,0) = { <0 (5.3)
a-xz <

where z,y,a € R, 0 < ¢, is a constant.

Pooling operations are grouped in two categories: max
pooling and average pooling. The max pooling layer returns the
maximum pixel intensity of the given rectangular regions. The
average pooling layer outputs the average pixel intensity of the
given rectangular regions. All neurons in a fully connected layer
connect to all the neurons in the previous layer [37]. This layer
combines all of the features extracted by the previous layers
across the image to identify the larger patterns.

The softmax function after normalization, i.e., normalized
exponential function, is the output function. A regression output
layer must follow the fully connected layer. The default loss
function for a regression layer is Mean Squared Error (MSE). A
full pass through the whole dataset is called epoch. The iteration
in deep learning is the number of batches needed to complete
one epoch. What a larger learning rate is gradually reduced

during the optimization time enables smaller steps toward the
optimum value [38]. The decay function is

Wil =W; +7- % (5.4)

where w; € R" is the weight at step¢ € Z7, n € R is the
learning rate of this decay function, and f(-) is the cost function
or loss function [40].

Performing validation check at regular intervals during model
training can determine whether the network is overfitting over
the training data. Hence, training loss and accuracy are
compared. The most important concept in deep learning is
accuracy. Along with the number of iterations, accuracy has
been applied as the termination condition. The termination
condition is to check whether the computations are converge or
not and decide when the iterations should be halted.

5.2.2 YOLO Models

YOLO is a single neural network that predicts bounding boxes
and class probabilities directly from full images [39]. The
bounding boxes refer to object position. YOLO is trained based
on full images which directly optimizes model performance. The
class probabilities refer to the output class label. YOLO models
adopt the entire image during training and testing time so that it
encodes contextual information of all classes. YOLO models
segment the input image into grids [6], typically 3 X 3 or 5 x 5.
Each grid cell predicts the bounding boxes and confidence
scores for those objects. The confidence scores refer to the test
process with ground truth. Each bounding box consists of five
parameters x,y, w, h € R and confidence ¢ € R in percentage.
Each grid cell is harnessed to predict conditional class
probabilities, usually 3 X 3 or 5 X 5. YOLO predicts what objects
present and where they are. A single convolutional network
simultaneously estimates multiple bounding boxes and class
probabilities for those boxes.

YOLO is highly generalizable which is less likely to break
down when applied to new domains or unexpected inputs. It is
fast and makes use of regression with 45 frames per second. In
the YOLO model, a picture is segmented into 7 x 7 blocks; visual
objects with confidence and coordinates are detected in each

block. YOLOv2 makes use of anchor boxes to detect visual
objects in an image. In order to find anchor boxes, Intersection
over Union (IoU) is harnessed to predict the objectiveness score

which is calculated by using
|ANB|

IoU = 305 € [0, 1] (5.5)
where A is the region of ground truth and B is the detected
region of visual object. A N B is the intersection between region
A and region B. A U B is the union of region A and region B. |-| is
the area of the region of the given image.

Anchor box offset is to refine the anchor box. Class
probability is to predict the class label assigned to each anchor
box. Anchor boxes are a set of predefined bounding boxes. Each
anchor box is tiled across the image. The use of anchor boxes
enables a network to detect multiple objects, visual objects with
multiple scales, and the overlapping objects. The advantages of
using anchor boxes are that anchor boxes eliminate the need to
scan an image with a sliding window, and it computes a
prediction at every potential position. The use of anchor boxes
replaces and drastically reduces the cost of the sliding windows.
Through anchor boxes, visual object detectors are designed with
three stages, namely object detection, feature encoding, and
pattern classification.

YOLOv3 improves upon YOLOvV2 by adding object detection at
multiple scales so as to detect smaller objects. The loss function
of YOLOv3 is separated into mean squared error for bounding
box regression, while binary cross-entropy is employed for visual
object classification, and it improves the detection accuracy [8].
YOLOv3 detector utilizes anchor boxes to have better initial
priors and predict the boxes accurately.

YOLOV4 is a one-stage object detection network that is
composed of three parts: backbone, neck, and head. The
backbone of YOLOv4 network acts as the feature extraction
network that computes feature maps from the input images. The
neck connects the backbone and the head, and it is composed of
a spatial pyramid pooling (SPP) module and a path aggregation
network (PAN). The head processes the aggregated features and
predicts the bounding boxes, objectness scores, and
classification scores. MATLAB provides the Deep Learning

Toolbox including YOLOv1 to YOLOv4 models with source codes
[47].

YOLOVS [56] was developed in the base framework with the
objective of reducing the complexity and improving the
performance of the network. This constitutes a benchmark with
the aim of improving the implementability. The YOLO network
partitions the input image into a grid of cells. The grid cells are
employed to predict bounding boxes; each of the cells contains a
target. In essence, the output of YOLOvV5 comprises predictive
information for each grid cell. This encompasses the parameters
like class predictions with the bounding boxes of each grid cell.

During the evolution of YOLO series [50], YOLOv6 [12],
YOLOvV7 [48], and YOLOvVS8 [19] have promoted industrial
applications. YOLOv6 combines processes such as EfficientRep,
self-distillation [60], and advanced quantification. It provides a
deployable network with customizable architecture and
effectively balances computing accuracy and speed. YOLOV7 is
an enhanced version of YOLOv6. YOLOv7 [48] focuses on the
training process and introduces strategies such as
reparameterization modules and model scaling. YOLOvS8 [19]
was evolved from YOLOVS. Together, these releases showcase
significant advances in the performance and efficiency of object
detection.

YOLOV9 [33] has taken significant advances in the field of
object detection by using deep learning. The proposed concept
of programmable gradient information (PGI) was employed to
cope with the variations required for deep neural networks with
multiple goals. YOLOvV10 introduces an approach to real-time
object detection, addressing both the post-processing and model
architecture deficiencies found in previous YOLO versions. By
eliminating non-maximum suppression (NMS) and optimizing
various model components, YOLOv10 achieves the performance
with significantly reduced computational overhead. YOLOv11 [4,
55, 57] was selected for its high efficiency in detecting small and
fast-moving objects, and it is suitable for identifying a small
object in each frame. In order to optimize YOLOv11 for the
specific challenges, a plethora of modifications were
implemented to improve its accuracy in detecting small objects.
YOLOvV12 is based on the attention-centric YOLO framework that

matches the speed of previous CNN-based ones while harnessing
the performance benefits of attention mechanisms [44].
YOLOvV13 is an accurate and lightweight object detector with a
hypergraph-based Adaptive correlation Enhancement
(HyperACE) mechanism that achieves efficient global cross-
location and cross-scale feature fusion.

In CNNs [43], there are the exploding gradient problems and
the vanishing gradient problems [5, 14] due to the uncertain
existence of gradients or derivatives of the loss surfaces [17, 28].
RNNs including LSTM and transformer models are thought as
one of the solutions to resolve these problems.

5.3 RNNSs, Transformers, and

Multimodal Approaches
5.3.1 RNNs

RNNs are a family of artificial neural networks for processing
sequential data, which is a dynamical system [7]. It is possible to
use the same transition function with the same parameters at
every time step. LSTM is a model for long short-term memory,
and the model can be lasted for a long period of time [43]. An
LSTM unit consists of four gates: input gate, cell, forget gate,
and output gate. LSTM is well suited to classify, process, and
predict time series given time lags of unknown size and duration
between important events. It is the same with CNNs, but it has
memory cells. The cells store a value of state, for either long or
short time periods. LSTM gates compute an output by using the
logistic function, see Eq. (5.0).

fz)= 7=,v€R (5.6)
The advantage of LSTM model is that LSTM was developed to
deal with the exploding and vanishing gradient problems [5, 23].
An LSTM network is a type of RNN models that can learn long-
term dependencies between time steps of sequence data. A
sequence input layer inputs sequence or time series data into
the network. An LSTM layer learns long-term dependencies
between time steps of sequence data. To predict class labels, the

network ends with a fully connected layer, a softmax layer, and a

classification output layer. It is the same as CNN models, but it
has memory.

OpenAl GPT models refer to Generative Pretrained
Transformer (GPT), and GPT shows how a generative model of
language is able to acquire knowledge and process long-range
dependencies by pretraining on a diverse corpus with long
stretches of contiguous text [9, 36, 51, 52]. The famous software
such as Microsoft PowerPoint provided real-time translation
between two languages by using transformer models [29, 42].
Transformer is a deep learning model, and it makes use of the
mechanism of self-attention, deferentially weighting the
significance of each part of the input data. Transformer is based
solely on attention mechanisms, dispensing with recurrence and
convolutions entirely [46]. Transformers were introduced in
2017 by Google Brain for NLP problems, so as to replace RNN
models (LSTM). The Google BERT model refers to Bidirectional
Encoder Representations from Transformers (BERT), and BERT
was pretrained based on two tasks: (1) language modeling and
(2) the next sentence prediction [54].

Recently, DeepSeek [1] has been developed, which was
funded by the Chinese hedge fund High-Flyer in 2023.
DeepSeek’s success has been described as “upending Al.”
DeepSeek-R1 provides responses comparable to other
contemporary large language models. The training cost was
reported to be significantly lower than other LLMs. This
breakthrough in reducing expenses while increasing efficiency
and maintaining the model’s performance in Al industry sent
“shockwaves” through the market. The release history of
DeepSeek is listed as:

« January 2025: DeepSeek chatbot

« December 2024: the base model DeepSeek-V3-Base and the
chat model DeepSeek-V3

« June 2024: DeepSeek Coder V2

April 2024: DeepSeek-Math models: Base, Instruct, and RL

January 2024: DeepSeek-MoE models (Base and Chat)

November 2023: DeepSeek-LLM

November 2023: DeepSeek Coder

DeepSeek-R1 improves model reasoning capabilities by using
pure reinforcement learning (RL). It explores the potential of
LLMs without any supervised data, focusing on the self-evolution
through a pure reinforcement learning process. DeepSeek-R1
incorporates a small amount of cold-start data and a multistage
training pipeline, after collecting thousands of cold-start data to
conduct fine-tuning operations on the DeepSeek-V3-Base model.
After the fine-tuning operations, the checkbot underwent an
additional reinforcement learning process by taking into account
of prompts from all scenarios [59]. DeepSeek directly applies
reinforcement learning to the base model without relying on
supervised fine-tuning operations (SFT).

In deep learning, fine-tuning is a method of transferring
knowledge [54], and the parameters of a pretrained neural
network model are trained based on new data. Low-rank
adaptation (LoRA) algorithm is an adapter-based method for
efficiently compressing large models. If a matrix A,,.,, hasn xn
elements, n € N, it will be decomposed into the multiplication of
two smaller matrices B,,,, and C,,,,,, m € N,

Anxn — anm) men (5.7)
where m satisfies n X n > n X m + m X n, matrix B and matrix
C are expected to have less elements in total than that of matrix
A. Therefore, matrix A is replaced in fine-tuning process by
using B - C. The pseudocode of LoRA method is shown in
Algorithm 14.

Algorithm 14: Low-rank adaptation (LoRA) for
compressing large models

Pre-trained model with weight matrix Wy € %<

Training data 2 = {(x;, _\-‘,-)};fi

Rank r, learning rate n Fine-tuned model with adapted weights

[

VS]

4 Aec 7, B ek suchthat W = Wy + AW, where AW = A - B
5 Initialize A and B randomly, freeze W)

6 foreach mini-batch (x.y) in & do

7 Forward pass using W = Wy + A - B

8 Compute loss .Z(x, yv; W)

9 Backpropagate gradients w.r.t. A and B

10 Update A < A —n -V, .&

11 Update B <~ B —n - V3.«

12 return Wy + A - B as the adapted weight matrix

The reasoning patterns of larger models can be distilled into
smaller models [1, 60]. DeepSeek conducted compressing
operations on a few dense models, and the distilled smaller
dense models perform exceptionally well. DeepSeek-R1 applies
reinforcement learning method starting from a checkpoint fine-
tuned with thousands of long chain-of-thought (CoT) examples
[45]. It distills the reasoning capability from a large spare model
to small dense models. The reasoning capabilities are
significantly improved through large-scale reinforcement
learning. The performance is further enhanced with the
inclusion of a small amount of cold-start data.

In DeepSeek, the integration of reward signals and diverse
data enables us to train a model that excels in reasoning. In
machine learning, distillation is the process of transferring
knowledge from a large model or a teacher model to a smaller
one [60] or a student model. Distilling more powerful models
into smaller ones yields excellent results. The distillation
strategies are both economical and effective.

The strategies in deep learning for model simplifications
usually comprise model pruning and model quantization
including model distillation. The main task of model quantization
is to convert high-precision floating-point numbers of the
parameters of neural networks into low-precision numbers. The

quantization methods reduce the size of the given models;
thereby they diminish memory consumption. The increase of the
speed on processors is capable of performing faster low-
precision calculations.

5.3.2 Vision Transformers
Vision transformer models are trained for image classification in
supervised learning with labels. The labels are related to image
sequence. Transformers could not be generalized well when
trained on insufficient amounts of data. In vision transformer
(ViT), an image is treated as a sequence of patches, and it is
processed by using a standard transformer encoder. The first
layer of ViT projects the flattened patches into a lower
dimensional space. Flattened means the rows will be linked
together. After the projection, a position embedding is added to
patch representations. Self-attention allows ViT to integrate
information across the entire image in the lowest layers.
Transformers show impressive performance from the scalability
and self-supervised pretraining. Image inpainting and image
outpainting are two examples of the scalability. ViT matches or
exceeds the state of the art on image datasets, but relatively
cheap to be pretrained. MATLAB has developed the ViT example.
In the field of machine learning [2, 18], a confusion matrix is
a specific table layout that allows visualization of the
performance of an algorithm, typically a supervised learning
one; in unsupervised learning, it is usually called as a matching
matrix.

5.3.3 Diffusion Transformers

In machine learning, diffusion models [15] are a class of latent
variable generative models. The goal of diffusion models is to
learn a diffusion process, and it generates the probability
distribution of a given dataset. The diffusion models are
employed to image denoising, inpainting, superresolution, and
image generation.

Diffusion models train a neural network to sequentially
denoise images blurred with Gaussian noise. The model is
trained to reverse the process of adding noise to an image. After
the training, the diffusion models are employed for image

generation by starting with an image composed of random noise.
Diffusion models can be applied to perform upscaling. Cascading
diffusion model stacks multiple diffusion models one after
another. The famous software DALL-E 2 is a cascaded diffusion
model; it generates images from text.

A new group of diffusion models is explored based on
transformer architecture. The scalability of Diffusion
transformers (DiT) is analyzed through the lens of forward pass
complexity as measured by using Gflops. DiTs with higher Gflops
consistently have lower FID (Fréchet Inception Distance) [10],
through increasing transformer depth/width or increasing the
number of input tokens. The diffusion models are well-poised to
benefit by inheriting best practices and training recipes from
other domains, as well as retaining favorable properties. The
attributes include scalability, robustness, and efficiency. DiTs
[35] adhere to the best practices of Vision Transformers (ViTs).
They are more effective for visual recognition than traditional
convolutional neural networks. There is a strong correlation
between the network complexity (measured by Gflops) and
sample quality (measured by FID [10]).

Transformers have replaced domain-specific architectures
across natural language, machine vision, reinforcement learning
[59], and metalearning [26]. Transformers have been explored in
Denoising Diffusion Probabilistic Models (DDPMs) to synthesize
nonspatial data, e.g., to generate CLIP image embeddings in
DALL-E 2. The Gaussian diffusion model adopts a forward
noising process, and it gradually applies noise to real data
xo € R

q(zt|zo) = Nlzt; v/arwo, (1 — ou)]] (5.8)
where a; € R is a hyperparameter, and
Ty = \/ouxo + \/(1 — a)eg, € ~ N(0,1).
Diffusion models are trained to learn the reverse process
po(ze-1|zt) = Nluo(zt), Yo(z+)] (5.9)
where deep neural networks are employed to predict
Po € [O, 1] € R.

In order to train diffusion models with a learned reverse

process, we have €(6) with Lgimpie

L gimpie(0) =|| €o(x:) — e |13 (5.10)

We train) |, with the full L(6).

L(0) = —p(xolz1) + ZtDKL[q*(wt_lla:t,xo) | po(@e—]z)] 51D
Once py € [0,1] € R is trained, new images are sampled by

initializing x; _ ~ N(0,I) and sampling z:—1 ~ pg(x¢—1, zt). By

interpreting the output of diffusion models as the score function,

the DDPM sampling procedure is guided to sample x with
p(z|c) € [0,1] by using

where Eo(zt,) = eo(xt, @) + s Vg log [p(c|z)] (5.12)
nd p(c|z) - p(z) = p(z|c) - p(c) (5.13)
Honce, log [p(c|z)] «log [p(z|c)]— log [p(z)] (5.14)

V. log [p(c|z)] o<V, log [p(z|c)] — V., log [p(z)] ~ (5.15)

The DDPM sampling procedure is guided to sample x with
p(z|c) € [0,1] € R" by using

A
Eo(x1,¢) = eq(1,¢) + s - V. log [p(c|z)] (5.16)
Simply,
g(wt,c) oc eo(xt, @) + 8- [eo(mt, ¢) — €o(zt, B)] (5.17)
é@(whc) X (1 o S)EH(wta qb) ts- 50($t7)a >0 (5.18)
eg(ze,c), s=1
Eg(xy,c) < eg(xy,), =0 (5.19)

(
(wta)7 ¢

A diffusion model is tramed with the representations z = E(z)
. New images can be generated by sampling a representation z
and subsequently decoding it to an image ¢ = D(z). DiT is based
on Vision Transformer (ViT) architecture, and it is operated on
sequences of patches. A smaller patch size results in a longer
sequence length. “Patchify” converts the spatial input into a
sequence of tokens. The number of tokens created by patchify is
determined by the patch size. The input tokens are processed by
using a sequence of transformer blocks. The transformer block is
modified to include an additional multi-head cross attention
layer following the multi-head self-attention block. The complete

DiT design space is patch size, transformer block architecture,
and model size. Scaling the transformer backbone yields better
generative models across all model sizes and patch sizes. The
scaling performance is measured by using Fréchet Inception
Distance (FID), the standard metric for evaluating generative
models of images. In mathematics, Fréchet distance [10] is a
measure of similarity between curves that takes into account the
location and ordering of the points along the curves. FID is a
metric to assess the quality of images created by using a
generative model. For two multidimensional Gaussian
distributions N(u, X) and N(u/, X1),

1

dr[N(u,), N(ut, 20)] =|| p— wt || +tr[S + D1—2(£21)7](5.20)
Inception Score (IS) is an algorithm to assess the quality of
images created by using a generative image model. Inception
score only evaluates the distribution of generated images, and
the FID compares the distribution of generated images with the
distribution of a set of real images (“ground truth”).
IS(Pgena Pdis) =€xXp [E:I:NPgen-DKL(Pgeny Pdis)] (5.21)
D1 (Pgen, Pais) = Dir|Pais(-|z) || Ezvp,, Pais(-|z)] (5.22)
Scaling the transformer backbone yields better generative
models across all model sizes and patch sizes. Increasing model
size and decreasing patch size yield considerably improved
diffusion models. Larger DiT models take use of large computes
more efficiently. Scaling both model size and the number of
tokens yields notable improvements in visual quality. Diffusion
transformers (DiTs) inherit the excellent scaling properties of
the transformer model [31, 58], and the DiT model can be
distilled by using the pseudocode supplied in Algorithm 15.

Algorithm 15: Distillation algorithm for DiT model

Input: Teacher model T, Student model S, dataset D, noise scheduler §;, loss

weights o, f8

Output: Trained student model S
1 foreach epocheinl...E do
2 foreach batch x in D do

n

0

// Sample random timestep and noise
1~ U1, Tax)

€ ~ N (0,1)

// Noisy input according to diffusion process
X —Ja x4+ ST —a; ¢

// Teacher prediction (no gradient)

er «— T(X;. 1)

// Student prediction

és < S(x, 1)

// Compute distillation loss

Lkp < llés —érl3

// Compute ground-truth denoising loss
Lot < |lés —€ll3

// Total loss

L <o -Lgp+ B-Lgr

// Backpropagation and update
Backpropagate L and update S

12 return S

5.4 Lab Session: Training a Vision Model
with MATLAB

At the end of this chapter, we would like to recommend all
readers complete the lab report. Please fill in the form shown in

Table 5.1

and submit it timely after each lab session (2 hours).

Table 5.1 Lab report for robotic vision

Name
Email
Lab date

<First Name Last Name>
<firstname.lastname@mailbox>

<dd-mm-yy>

Submitted date <dd-mm-yy>

Project title

Lab objectives

Configurations and
settings

Methods
Workflow
Datasets
Input

Output
Testing steps

Bugs or problems

Result analysis

Conclusion/reflection

References

Vision Transformer for Image Classification

The objective is to detect people and the distance to the
camera

from a video with a calibrated stereo camera

<The preferences, software, hardware, platforms, tools,
etc.>

<The relevant scientific theories or concepts >
<The step-by-step procedure for the experiment>
<The data and materials for your experiments>
<image filename, size, resolution >

<image filename, size, resolution>

<Functional and non-functional testing methods step by
step>

<The system error code, lines of the code>
<The tables, graphs, and figures, etc.>

<The strengths and weaknesses, or learned from this
project >

https://au.mathworks.com/help/vision/ug/evaluating-the-
accuracy-of-single-camera-calibration.html

Appendix: <Source codes with comments and line numbers>
An example of this lab report is:

- Project title: Vision Transformer for Image Classification

- Project objectives: The objective of using transfer learning
with a pretrained Vision Transformer (ViT) is to enhance
image classification by adapting a model trained on large
datasets to a new task, improving accuracy, and reducing
training time through fine-tuning on specific data.

- Configurations and settings: MATLAB Online

« Methods: ViT is a neural network model that uses the
transformer architecture to encode image inputs into feature
vectors. The network consists of two main components:
backbone and head. The pretrained ViT network has learned a
strong feature representation for images.

- Datasets: The flowers dataset has a size of about 218 MB and
contains 3670 images of flowers belonging to five classes:
Daisy, Dandelion, Rose, Sunflower, and Tulip.

- Implementation steps:

https://au.mathworks.com/help/vision/ug/evaluating-the-accuracy-of-single-camera-calibration.html

1. Load a pretrained ViT network by using the vision
transformer function.

2. Download and extract the training data.

3. Replace the classification head with a new one that maps
the extracted features to prediction scores for the new set
of classes in order to train the neural network to classify
images across those classes.

4. Specify the training options.
5. Train the neural network by using the trainnet function.

6. Evaluate the accuracy of the network by using the test
data.

7. Make predictions using the test data.

8. Use the trained neural network to make a prediction using
the first image in the test data.

Testing steps:
1. Make predictions using the test data.

2. To convert the prediction scores to class labels, use the
onehotdecode function.

3. Use the trained neural network to make a prediction by
using the first image in the test data.

Result analysis: The output images visually validate the
creation, assembly, and interactive capabilities of the robot
arm, enhancing the written descriptions and confirming the
project’s objectives have been met.

Conclusion/reflection: The ViT model demonstrates efficient
adaptation for image classification tasks with reduced training

time and improved accuracy, proving effective for complex
vision applications through transfer learning and data

augmentation. Readings: https://au.mathworks.com/help/
vision/ug/transfer-learning-using-pretrained-vit-network.html.

5.5 Exercises
Question 5.1 Can YOLOs detect small visual objects?

Question 5.2 In deep learning, how to select a suitable
algorithm for object detection? What balance should we take into
consideration?

Question 5.3 Why transformers are better than other deep
learning methods?

Question 5.4 How to simplify a large transformer model in
deep learning?

Question 5.5 What are the differences between model pruning
and model distillation in deep learning?

References

1. An W, Bi X, Chen G et al (2024) Fire-flyer AI-HPC: A cost-effective software-
hardware co-design for deep learning. In: International conference for high
performance computing, networking, storage and analysis. IEEE, pp 1-23

2.
Alpaydin E (2009) Introduction to machine learning. MIT Press, Cambridge

3.
Badrinarayanan V, Handa A, Cipolla R (2017) SegNet: a deep convolutional
encoder-decoder architecture for robust semantic pixel-wise labelling. IEEE Trans
Pattern Analy Mach Intell 39(12):2481-2495
[Crossref]

4.
Cabuk VU, Kubilay Savkan A, Kahraman R, Karaduman F, Kiril O, Sezer V (2018)
Design and control of a tennis ball collector robot. In: International conference on
control engineering and information technology (CEIT)

5.
Caruana R, Lawrence S, Giles CL (2001) Overfitting in neural nets:
backpropagation, conjugate gradient, and early stopping. In: Advances in neural
information processing systems, pp 402-408

6.

Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) DeepLab:
semantic image segmentation with deep convolutional nets, atrous convolution,

https://au.mathworks.com/help/vision/ug/transfer-learning-using-pretrained-vit-network.html
https://doi.org/10.1109/TPAMI.2016.2644615

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

and fully connected CRFs. IEEE Trans Pattern Analy Mach Intell 40(4):834-848
[Crossref]

Collobert R, Weston J (2008) A unified architecture for natural language
processing: dEEP neural networks with multitask learning. In: International
conference on machine learning, pp 160-167

Cover T, Thomas J (1991) Elements of information theory. Wiley, Hoboken

Dosovitskiy A et al (2021) An image is worth 16x16 words: transformers for
image recognition at scale. In: International conference on learning
representations

Dowson D, Landau B (1982) The Fréchet distance between multivariate normal
distributions.] Multivar Analy 12 (3):450-455
[Crossref]

Dunne RA, Campbell NA (1997). On the pairing of the softmax activation and
cross-entropy penalty functions and the derivation of the softmax activation
function. In: Australasian conference on neural networks, vol 181, p 185

Gao X, Nguyen M, Yan W (2024) HFM-YOLO: a novel lightweight and high-speed
object detection model. In: Optimization, machine learning, and fuzzy logic:
theory, algorithms, and applications. IGI Global, Hershey

Guo Y et al (2024) AnimateDiff: Animate your personalized text-to-image diffusion
models without specific tuning. In: International conference on learning
representations

He K, Zhang X, Ren S, Sun J (2016). Identity mappings in deep residual networks.
In: European conference on computer vision, pp 630-645

Ho J, Jain A, Abbeel P (2020) Denoising diffusion probabilistic models. In:
Advances in neural information processing systems

Hopfield JJ (1988). Artificial neural networks. IEEE Circuits Devices (Magazine)
4(5):3-10
[Crossref]

Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017). Densely connected
convolutional networks. In: IEEE CVPR, vol 1, no 2, p 3

Jordan MI, Mitchell TM (2015) Machine learning: Trends, perspectives, and
prospects. Science 349(6245):255-260
[MathSciNet][Crossref]

Ju RY, Cai W (2023). Fracture detection in pediatric wrist trauma X-ray images
using YOLOvVS8 algorithm. Sci Rep 13(1):20077
[Crossref]

Klette R (2014) Concise computer vision: an introduction into theory and
algorithms. Springer, London
[Crossref]

https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1016/0047-259X(82)90077-X
https://doi.org/10.1109/101.8118
http://www.ams.org/mathscinet-getitem?mr=3382217
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1038/s41598-023-47460-7
https://doi.org/10.1007/978-1-4471-6320-6

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

LeCun Y, Bengio Y (1995). Convolutional networks for images, speech, and time
series. In: The handbook of brain theory and neural networks, vol 3361, no 10

LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD
(1989) Backpropagation applied to handwritten zip code recognition. Neural
Comput 1(4):541-551

[Crossref]

LeCun Y, Bottou L, Bengio Y, Haffner P (1998). Gradient-based learning applied to
document recognition. Proc IEEE 86(11):2278-2324
[Crossref]

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436-444
[Crossref]

Lee CY, Gallagher PW, Tu Z (2016). Generalizing pooling functions in
convolutional neural networks: mixed, gated, and tree. In: Artificial intelligence
and statistics, pp 464-472

Lemke C, Budka M, Gabrys B, (2013). Metalearning: a survey of trends and
technologies. Artif Intell Rev 44(1):117-130
[Crossref]

Lewis P et al (2020) Retrieval-augmented generation for knowledge-intensive NLP
tasks. In: Advances in neural information processing systems

Li X (2018) Preconditioned stochastic gradient descent. IEEE Trans Neural Netw
Learn Syst 29(5):1454-1466
[MathSciNet][Crossref]

Liu Y, Nand P, Hossain A, Nguyen M, Yan W (2023) Sign language recognition
from digital videos using feature pyramid network with detection transformer.
Multimed Tools Appl 82:21673-21685

[Crossref]

MacKay D (2003). Hopfield networks. In: Information theory, inference and
learning algorithms. Cambridge University, Cambridge, p 508

Meng C, Rombach R, Gao R, Kingma D, Ermon S, Ho J, Salimans T (2023) On
distillation of guided diffusion models. In: IEEE CVPR

Meznar S, Lavrac N, Skrlj B (2021) Transfer learning for node regression applied
to spreading prediction. arXiv:2104.00088

Mi Z, Yan W (2024) Strawberry ripeness detection using deep learning models.
Big Data Cogn Comput 8(8):92
[Crossref]

Pan S, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng
22(10):1345-1359
[Crossref]

https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s10462-013-9406-y
http://www.ams.org/mathscinet-getitem?mr=3796895
https://doi.org/10.1109/TNNLS.2017.2672978
https://doi.org/10.1007/s11042-023-14646-0
https://doi.org/10.3390/bdcc8080092
https://doi.org/10.1109/TKDE.2009.191

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Peebles W, Xie S (2023) Scalable diffusion models with transformers. In: IEEE
ICCV

QiJ, Nguyen M, Yan W (2022) Small visual object detection in smart waste
classification using Transformers with deep learning. In: International conference
on image and vision computing new zealand (IVCNZ).

Ramsauer H et al (2021). Hopfield networks is all you need. In: International
conference on learning representations

Rao S (2009) Engineering optimization: theory and practice, 4th edn. Wiley,
Hoboken. ISBN: 978-04-70183-52-6
[Crossref]

Redmon J, Divvala S, Girshick R, Farhadi A (2016). You only look once: unified,
real-time object detection. In: IEEE CVPR, pp 779-788

Rumelhart DE, Hinton GE, Williams R] (1986) Learning representations by
backpropagating errors. Nature 323(6088):533-536
[Crossref]

Russakovsky O, Deng J, Su H, Krause], Satheesh S, Ma S, Berg AC (2015)
ImageNet large scale visual recognition challenge. Int] Comput Vision
115(3):211-252

[MathSciNet][Crossref]

Sarikaya R, Hinton GE, Deoras A (2014) Application of deep belief networks for
natural language understanding. IEEE/ACM Trans Audio Speech Lang Process
22(4):778-784

[Crossref]

Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural
Netw 61:85-117
[Crossref]

Tian Y, Ye Q, Doermann D (2025) YOLOv12: attention-centric real-time object
detectors. https://arxiv.org/abs/2502.12524 systems

Vallayil M, Nand P, Yan W, Allende-Cid H (2025) CARAG: a context-aware
retrieval framework for fact verification, integrating local and global perspectives
of explainable AI. Appl Sci 15:1970

[Crossref]

Vaswani A et al (2017) Attention is all you need. In: The conference on neural
information processing systems (NIPS)

Vedaldi A, Lenc K (2015) MatConvNet: convolutional neural networks for
MATLAB. In: ACM international conference on multimedia, pp 689-692

Wang CY, Bochkovskiy A, Liao HYM (2023). YOLOv7: trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors. In: IEEE/CVF conference
on computer vision and pattern recognition, pp 7464-7475

https://doi.org/10.1002/9780470549124
https://doi.org/10.1038/323533a0
http://www.ams.org/mathscinet-getitem?mr=3422482
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/TASLP.2014.2303296
https://doi.org/10.1016/j.neunet.2014.09.003
https://arxiv.org/abs/2502.12524
https://doi.org/10.3390/app15041970

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Wei J, Wang X, Schuurmans D, Bosma M, Ichter B, Xia F, Chi E, Le Q, Zhou D
(2022) Chain-of-thought prompting elicits reasoning in large language models. In:
Advances in neural information processing systems

Xia Y, Nguyen M, Yan W (2024) An improved YOLO algorithm for Kiwifruit
detection. In: Optimization, machine learning, and fuzzy logic: theory, algorithms,
and applications. IGI Global, Hershey

Xiao B, Nguyen M, Yan W (2023) Apple ripeness identification from digital images
using transformers. In: Multimedia tools and applications. Springer Science and
Business Media LLC, Berlin

Xiao B, Nguyen M, Yan W (2023) Fruit ripeness identification using transformers.
In: Applied intelligence. Springer Science and Business Media LLC, Berlin

Yan WQ (2019) Introduction to intelligent surveillance: surveillance data capture,
transmission, and analytics, 3rd edn. Springer, Berlin
[Crossref]

Yan WQ (2023) Computational methods for deep learning: theory, algorithms, and
implementations, 2nd edn. Springer, Berlin
[Crossref]

Yang G (2025) ChatPPG: multi-modal alignment of large language models for time-
series forecasting in table tennis. Master’s Thesis, Auckland University of
Technology, New Zealand

Yang X, Zhao W, Wang Y, Yan W, Li Y (2024) Lightweight and efficient deep
learning models for fruit detection in orchards. Nat Sci Rep 14:26086

Yang G, Nguyen M, Yan W, Li X (2025) Foul detection for table tennis serves using
deep learning. Electronics 14(1):27
[Crossref]

Zhang Y, Long J, Li C (2025) Knowledge distillation for object detection with
diffusion model. Neurocomputing 636:130019
[Crossref]

Zhu D, LiT, Ho D, Wang C, Meng MQ-H (2018) Deep reinforcement learning
supervised autonomous exploration in office environments. In: IEEE international
conference on robotics and automation (ICRA), pp 7548-7555

Zhu W, Peng B, Yan W (2024) Dual knowledge distillation on multiview pseudo
labels for unsupervised person re-identification. IEEE Trans Multimedia 26:7359-
7371

[Crossref]

Zhao H, Xu S, Yan W, Xu D (2025) Design and optimization of target detection and
3D localization models for intelligent muskmelon pollination robots. Horticulturae
11(8):905
[Crossref]

https://doi.org/10.1007/978-3-030-10713-0
https://doi.org/10.1007/978-981-99-4823-9
https://doi.org/10.3390/electronics14010027
https://doi.org/10.1016/j.neucom.2025.130019
https://doi.org/10.1109/TMM.2024.3366395
https://doi.org/10.3390/horticulturae11080905

© The Author(s), under exclusive license to Springer Nature Singapore Pte
Ltd. 2026

W. Q. Yan, Robotic Vision, Advances in Computer Vision and Pattern
Recognition

https://doi.org/10.1007/978-981-95-4360-1_6

6. Robotic Perception and
Intelligence

Wei Qi Yan!

(1) Department of Computer and Information Sciences,
Auckland University of Technology, Auckland, New
Zealand

Abstract

In this chapter, starting from machine intelligence and
genetic algorithm (GA), our depiction expounds how to
measure the intelligence of robots by using Turing test.
Following this, our focus is on reinforcement learning,
especially deep Q-learning and imitation learning such as
inverse reinforcement learning (IRL) for robotic perception
and autonomous systems. The significance of this chapter is
to measure the intelligence of robots and deliver the
knowledge of how to train robots in operations to reach the
level of human intelligence.

6.1 Perception

In robotics, we acquire visual information of holistic scenes
from our perception [50] by using sensors. The sensors
include digital cameras, microphones, and other
instruments, and the data is collected from our perceptible
environment. With fusing information from multiple
channels of sensors on robots, our observations are

https://doi.org/10.1007/978-981-95-4360-1_6

employed for robotic path planning [28], navigation, scene
understanding, and obstacle avoidance [62].

LiDAR, namely, Light Detection and Ranging, or Laser
Imaging, Detection, and Ranging, is a method for
determining ranges by targeting an object or a surface with
a laser, measuring the time for the reflected light to the
receiver [22, 27]. LiDAR harnesses ultraviolet, visible, or
near infrared light to image objects. The method is
employed for measuring distances by using a laser on a
target and measuring its reflection with a sensor. A LiDAR
determines the distance of an object or a surface by using

d= <t (6.1)
where ¢ € R is the speed of light, d € R is the distance
between a sensor and an object, and t € R is the time spent
for the laser light to pass and then travel back to the
detector.

A mobile robot uses its LiDAR system to percept our
environment, understand surrounding scene, construct a
map, and avoid obstacles [27]. LiDAR sensors are mounted
on mobile platform, and they require instrumentation to
determine the resolution, absolute position, and orientation
of robots such as Global Positioning System (GPS) receiver
and an Inertial Measurement Unit (IMU). LiDAR could
provide the scanned 3D maps for robotic navigation and
path planning [28].

Cameras provide image data to the robots for visual
object detection and recognition, tracking, and
manipulation. Different from LiDAR systems that only
provide point clouds and shape information, digital cameras
offer the details of visual objects, such as texture, color, and
rotations, especially for rotating objects. Recently, Tesla
cars discarded LiDAR sensors on the autonomous cars, and
only digital cameras are adopted for obstacle avoidance,
path planning, and driving navigation [28]. All Tesla
vehicles are equipped with computers and cameras. Hence,

digital cameras on robots are playing decisive roles in visual
scene understanding and visual information processing.

An Inertial Measurement Unit (IMU) is an electronic
device, and it measures and reports a robot’s force, angular
rate, and orientation of robot, by using a combination of
accelerometers, gyroscopes, and magnetometers. IMUs are
incorporated into Inertial Navigation Systems (INS), and
they utilize the raw IMU measurements to calculate
attitude, angular rates, linear velocity, and position related
to a global reference frame. In robotics, an IMU can be
integrated into GPS-based automotive navigation systems or
robot tracking systems for the purposes of traffic collision
analysis [36, 37]. An IMU sensor adopts information fusion
to control robots.

6.2 Robotic Intelligence

Robots have intelligence. Firstly, we shed light on logic [3],
which refers to Boolean logic in algebra. Logic only has two
states: True and False or “1” and “0.” The family of logic
concepts includes first-order logic, fuzzy logic, predicative
logic, propositional logic, etc. Computers have the ability to
make smart decision [20] fundamentally.

Fuzzy logic is a form of many-valued logic in which the
truth value of variables may be any real number between 0
and 1. By contrast, in Boolean logic, the truth values of
variables may only be the integer value 0 or 1. Fuzzy logic is
employed in control systems to allow experts to contribute
vague rules [29].

Al consists of the parts like perception or observation
[33-35], learning, presentation, and reasoning or inference.
Al covers the fields of search, retrieval, mining, and
reasoning and path planning [28]. In Al, the topics include
uninformed search, informed (heuristic) search, adversarial
search, etc. Robots can find the shortest path because of
searching on maps.

Reasoning [57] is a verb, which conveys the
understandings from the knowledge what we know to infer
what we do not know. Reasoning has the approaches-based
forward/backward chaining, probabilistic reasoning, Bayes’
rule, dynamic Bayesian networks, etc. Bayes’ rule, namely
Bayes’ theorem, is related to the prior, posterior, likelihood,
and evidence. It is the base knowledge of modern machine
learning [1, 18].

p(z,y) = p(z|y)p(y) = p(y|z)p(x) € (0,1] (6.2)
where € R and y € R are events, p(z,y) € [0,1] is the
joint probability, and p(z|y) € [0, 1] and p(y|z) € [0, 1] are
conditional probabilities.

There are a number of ways to make decision [20], such
as decision trees, decision networks, expert systems,
sequential decision, game theory, etc. Decision tree is a
typical method to make smart decision. Typically, the
decision tree is a binary tree. The tree as one of the data
structures already sorted data in order; thus the decision
tree will save our time. Based on decision trees, decision
forest [20] is considered to develop much complicated
approaches for decision-making.

Expert system fully harnesses or clones our human
experience [29]. In robotics, an expert system is a computer
system emulating the decision-making ability of a human
expert. An expert system is divided into two subsystems:
knowledge base, which represents facts and rules, and
inference engine that applies the rules to the known facts.

The nature-inspired computing refers to cellular
automata, neural computations, and evolutionary
computation. More recent computations include swarm
intelligence [10], artificial immune systems, membrane
computing, and amorphous computing. In machine
intelligence [9, 47, 48], there are three types of algorithms.

Physics-inspired algorithms employ basic principles of
physics based on deterministic principles, for example,
Newton’s laws and simulated annealing (SA) algorithm.

Physics-inspired machine learning takes advantage of the
obtained prior knowledge to train machine learning models.
This means it will need fewer samples to train the model or
make the training outcomes more accurate.

In chemistry, chemical reactions are written in the form
of chemical formulas by using symbols representing
chemical elements and molecules. The mechanisms of
chemical reactions are quite similar to the mechanisms of
selection and variation in evolutionary algorithms, and the
algorithms lead to new concepts of search and optimization
algorithms.

Bioinspired computing, short for biologically inspired
computing, is a field of study which seeks to solve computer
science problems by using models of biology [8, 52].
Bioinspired computing is employed to train a robot. A robot
is navigated in an unknown terrain. Biology-based
algorithms (BBAs) are classified into three groups:
evolutionary algorithms (EA), brain-inspired algorithms
(BIA), and swarm intelligence-based algorithms (SIA) [9].

Swarm intelligence is the collective behavior of
decentralized and self-organized systems. A swarm is made
up of multiple agents [32]. The agents are able to exchange
heuristic information in the form of local interactions.

The fundamental idea of evolutionary algorithms is based
on Darwin’s theory of evolution; it gained momentum in the
late 1950s after the publication of the book “Origin of
Species” [4].

Brain-inspired computing refers to computational models
and methods based on the mechanism of human brain [21].
The goal is to enable the machine to realize various
cognitive abilities and coordination mechanisms of human
beings in a brain-inspired manner and finally achieve or
exceed human intelligence. Brain-inspired computing has
been applied to deep learning [15, 23, 41], and the
mechanism of our human brain is partially harnessed in
artificial neural networks [26].

A genetic algorithm (GA) is a metaheuristic inspired by
using the process of natural selection, and GA belongs to
the larger class of evolutionary algorithms (EAs). A gene is
devitalized in allele. An allele is a form of genes at a
particular position (locus) on a chromosome. It is the bit of
coding DNA at that place. Hence, we take advantage of
genetic algorithms in logic way to process gene information.
A typical genetic algorithm requires (1) a genetic
representation of the solution domain and (2) a fitness
function to evaluate the solution domain. The genetic
algorithm (GA) has the following steps:

. Initialization: Create an initial population.

- Evaluation: Evaluate each member of the population, and
calculate a “fitness” for the individual.

« Selection: Constantly improve populations’ overall
fitness.

« Crossover: Create new individuals by combining aspects
of the selected individuals.

« Mutation: Add randomness into populations’ genetics.

« Repeat: Start again until a termination condition is
reached.

When we repeat this process, the termination conditions
are:

« A solution is found that satisfies the minimum criteria.
A fixed number of generations reached.

An allocated budget (e.g., computational time, etc.)
reached.

The highest ranking solution’s fitness has reached.

A plateau no longer produces better results.
Combinations of the above.

Algorithm 16: Genetic algorithm

(S I

wn

R=NEN- TR -

10

11
12

14
15
16

17
18

Input: Fitness function f, population size N, mutation rate m, crossover rate

¢, number of generations G

Output: Best individual found

// Initialize population

P < Randomly initialize N individuals ;
for g < 1to G do

// Evaluate fitness
foreachi € P do
L i.fitness « f(i) :
// Selection
M <« Select parents from P based on fitness (e.g., tournament or roulette
wheel) ;
// Crossover
C «—1{}: // New offspring
while |C| < N do
Select parents py, p2 from M ;
if random() < c¢ then
L (01, 02) < Crossover(pi, p2) :
else
L o1 < P1, 02 < P2,
Addo;,0>to C;
// Mutation
foreach i € C do
if random() < m then
L L Mutate(i) ;

// Create new generation (with elitism)
P <« Bestindividual in P +top N — 1 from C ;

return Best individual in P

The pseudocode for the GA algorithm is shown in Algorithm
16. The Python code for GA algorithm is shown in Fig 6.1.
The advantages of using the GA algorithm are global
optimum, without continuity requirements, without
derivatives, and without linearity limitation, etc. Based on

GA algorithms, we are able to solve the optimization
problems of the weights of an artificial neural network by
using loss surfaces in deep learning [15, 23, 41]. Through
using GA algorithm, it is possible to get rid of the vanishing
gradient problem and the exploding gradient problem.
Traditionally, RNNs such as LSTM [5] and GRU [49] have
been applied to solve this weight optimization problem as
shown in Fig. 6.2.

def genetic_algorithm(population_size, chromosome_length, generations, crossover_rate=0.7, mutation_rate=0.01)
population = generate_population(population_size, chromosome_length)
best_solution = None
best_fitness = —float('inf')

for generation in range(generations):
fitness_scores = calculate_fitness(population)

Track the best solution
current_best_index = np.argmax(fitness_scores)
current_best_fitness = fitness_scores[current_best_index]
if current_best_fitness > best_fitness:

best_fitness = current_best fitness

best_solution = population[current_best_index]

print(f"Generation {generation+1}: Best fitness = {best_fitness}")

Select individuals for the next generation
population = select_individuals(population, fitness_scores)

Create the next generation via crossover and mutation

new_population = []

for i in range(@, population_size, 2):
parentl = population[i]
parent2 = population[(i + 1) % population_size]
offspringl, offspring2 = crossover(parentl, parent2, crossover_rate)
new_population.append(mutate(offspringl, mutation_rate))
new_population.append(mutate(offspring2, mutation_rate))

population = np.array(new_population)

return best_solution, best_fitness

Fig. 6.1 The Python code for GA algorithm

log(1 + 100*(x(1)* - x(2))* + (1 - x(1))d)

09

Fig. 6.2 The GA algorithm is employed for resolving optimization problems in
deep learning

Human has IQ (i.e., Intelligence Quotient) and EQ (i.e.,
Emotional Quotient) [42]. An IQ is a total score derived
from a set of standardized tests or subtests designed to
assess human intelligence [32]. Raven’s progressive
matrices [40] have been applied to evaluate the IQ of an
individual as shown in Fig. 6.3. Recent tests are based on
WAIS-II (Wechsler Adult Intelligence Scale). In WAIS-II, two
groups of tests will be conducted: Verbal IQ and
Performance 1Q.

Fig. 6.3 An IQ test item in the style of a Raven’s progressive matrices test

IQ classification is the practice of categorizing human
intelligence, as measured by intelligence quotient (IQ) tests.
The Wechsler Adult Intelligence Scale (WAIS) [53] is an IQ
test designed to measure intelligence and cognitive ability
in adults and older adolescents. In the latest WAIS 5 (2024)
test, the FSIQ (i.e., Full Scale IQ) is generated from seven
subtests: similarities, vocabulary, block design, matrix
reasoning, figure weights, digit span sequencing, and
coding. The 15 ancillary index scores include general ability
index. The test may be administered in the classic physical
format or on a digital platform.

Turing test [7, 11] is a test of machine’s ability to exhibit
intelligent behavior, and it is equivalent to, or
indistinguishable from, that of a human [16]. ChatGPT-4
passes a rigorous Turing test, diverging from average
human behavior chiefly to be more cooperative [29].
ChatGPT is able to recognize CAPTCHA characters now,
and CAPTCHA [14] stands for “Completely Automated
Public Turing test to tell Computers and Humans Apart.”
Figure 6.4 provides an example of CAPTCHA character
recognition by using ChatGPT.

SI{cee’ I

Can you recognise the letters?

@ The letters in the image appear to be distorted, but it looks like they might spell "smwm". The

distortion is making it difficult to interpret with full certainty.

Fig. 6.4 CAPTCHA characters recognition using ChatGPT

Thus, robotic intelligence is realistic [9], it is one of the
new research directions, and robotic intelligence is possible
to be measured by using computational methods. We are
able to use text and image pairs to measure the intelligence
in multimodal way through deep learning models [11, 56].

6.3 Reinforcement Learning for

Visual Control

In 2025, Professor Andrew Barto and Professor Richard
Sutton received ACM Turing Award 2024 for their
contributions to Reinforcement Learning, especially for
developing the conceptual and algorithmic foundations of
reinforcement learning. Professor Barto and Professor
Sutton have published the famous book [45] as the pioneers
of Reinforcement Learning. Reinforcement learning is
regarded as the cornerstone of contemporary Al such as
OpenAl ChatGPT software, Qwen, and DeepSeek software
[28].

In Fig. 6.5, a vacuum robot is moving on a table, and the
robot can be facilitated with various sensors without falling
down from the table. In this section, the explanation
regarding how to control a robot to fulfill our tasks by using
reinforcement learning will be elucidated [29, 45].

Fig. 6.5 A robotic vision system

Reinforcement learning is a goal-directed computational
approach where a computer learns to perform a task by
interacting with an unknown dynamic environment [31, 45].
Reinforcement learning has been applied to AlphaGo.
AlphaGo is a computer program that plays the game Go [29,
43].

The reinforcement learning approach [6, 15] enables
computers to make a series of decisions and maximizes
cumulative reward for the task without human intervention,
without being explicitly programmed to achieve the tasks
[23]. The aim of reinforcement learning [24] is to train an
agent to complete a task. An agent is a robot or algorithm.
Reinforcement learning [45] is working for an unknown
dynamic environment [31].

The agent receives a sequence of observations and
corresponding rewards from the environment and sends
actions to the environment. The reward is a measure of how
successful an action is with respect to completing the task.
The agent contains two components: a policy and a learning

algorithm or state estimator. The policy is a mapping that
selects actions based on observations from the environment.
Typically, the policy is a function approximator with tunable
parameters, such as the weights of a deep neural network.
The algorithm continuously updates the policy parameters
based on action, observations, and reward. The goal of
reinforcement learning algorithm is to find an optimal policy
that maximizes the cumulative reward received [24, 45].
The pseudocode of PPO algorithm in reinforcement learning
is shown in Algorithm 17. In summary, reinforcement
learning [45] refers to an agent learning the optimal
behavior through repeated trial-and-error interactions with
the environment without human involvement [24]. The
general workflow for training an agent through
reinforcement learning [45] is comprised of the following
steps:

« Formulate Problem: Define the task for the agent to
learn.

« Create Environment: Define the environment within
which the agent operates.

« Define Reward: Specify the reward signal that the agent
uses to measure its performance.

- Create Agent: Create the agent.

- Train Agent: Train the agent policy representation.

- Validate Agent: Evaluate the performance of the trained
agent.

« Deploy Policy: Deploy the trained policy representation.

Reinforcement learning is to learn what to do—how to

map situations to actions—so as to maximize a numerical

reward [24]. Reinforcement learning receives reward,

penalty, or trial error for its actions to resolve a problem.

Reinforcement learning is able to learn the best policy and

maximize the total reward [58]. The sequence of actions has

the maximum cumulative reward. For each policy 7 € 11,

there is a reward v™(s;¢) € R at state s;, and the optimal
policy is sought

v*(st) —max (v"(st)), Vst

Figure 6.6 shows a MATLAB example by using
reinforcement learning to develop a strategy for a mobile
robot to avoid obstacles. The objective of reinforcement
learning is that the robot should avoid colliding into
obstacles. This example shows an occupancy map of a
known environment to detect obstacles and check collisions
that the robot may make. The range sensor readings are
observations, and linear and angular velocity controls are
from the action [29].

Binary Occupancy Grid

Y [meters]

X [meters]

Fig. 6.6 A mobile robot to avoid obstacles in MATLAB

Algorithm 17: PPO algorithm

Input: Initial policy parameters €, value function parameters ¢, clipping
threshold €, learning rate », number of iterations K

Output: Optimized policy mp

1 fork < 1to K do

2 Collect a set of trajectories & = {t;} by running policy my;

3 Compute advantage estimates /i, using Generalized Advantage Estimation

(GAE) or other methods;

4 Compute old policy probabilities mg,, (a,|s;) for each (s;, a;) € ;
5 for each epoch do
6 for each minibatch # C & do
s (rahahilitv ratia: - _ _molar|sy) .
7 Compute probability ratio: r,(6) = Ty @15
8 Compute clipped objective:
L") = min (; (0)A,. clip(r;(©), 1 — e, 1+ e)/if)
9 Update policy parameters via gradient ascent:
0 <04+ 1Ve > 5 L (0):;
10 Update value function parameters ¢ by minimizing:
LY (@) = "(Vy(s)) — R)?
P

6.4 Imitation Learning and Inverse

Reinforcement Learning

In imitation learning, the agent aims to mimic human
behaviors [29]. The agent learns from a dataset of
demonstrations by an expert, typically a human. The goal is
to replicate the expert’s behavior in similar situations. When
a human hand shows sign languages, the landmarks will
lead the joint motion of machine hand [46]. Like
reinforcement learning, imitation learning involves

observing an expert performing a task and learning to
imitate those actions. The three steps of implementing this
algorithm are:

« Data Collection: An expert demonstrates the task to be
learned. The actions and decisions of the expert are
recorded as data.

« Learning: The collected data is employed to train a deep
learning model [1]. The model learns a policy—a mapping
from observations of the environment to actions.

« Evaluation: The trained model is tested in the
environment to assess how well it conducts compared to
an expert. The goal is to minimize the differences between
expert’s performance and agent’s performance.

Basically, there are two approaches in imitation learning:

« Behavioral Cloning: The model is trained in a supervised
learning fashion by using state-action pairs from expert’s
demonstrations. The pseudocode of behavioral cloning is
shown in Algorithm 18.

« Inverse Reinforcement Learning (IRL): It aims to learn the
underlying reward function that the expert seems to be
maximizing. This approach can generalize better to
unseen states. The pseudocode is shown in Algorithm 19.

The challenges in imitation learning include:

« Data Quality: The quality of policy is highly dependent on
the quality of demonstrations.

« Distribution Shift Problem: The agent may encounter
states that were not covered in the demonstrations,
leading to uncertain behavior.

« Scalability: Collecting expert demonstrations can be
expensive and time-consuming, especially for complex
tasks.

« Generalization: The ability for the agent to generalize the
learned behaviors is a challenge, especially in dynamic
and unpredictable environments [31].

MATLAB provides two examples for imitation learning.
One is mobile vehicle lane keeping, and another is for flying
robot control. In MATLAB, the deep neural network
successfully imitates the behavior of Model Predictive
Controller (MPC). The vehicle state and control trajectories
for the controller and the deep neural network closely align.
Figure 6.7 shows a MATLAB example of flying robot control.

5-
4-

3

5 1)
-5 0 5

Fig. 6.7 Flying robot control using imitation learning

Algorithm 18: Behavior cloning algorithm in imitation
learning

N

Input: Expert demonstration dataset 7 = {(s;, a;)}:_,

Output: Policy 7y (a|s) parameterized by &

1 Initialize policy network my with random weights;

2 repeat

3 Sample a mini-batch {(s;, “‘f)},[,;‘lzl from &;

4 Compute loss: .Z(0) = % Z’;’:l E(mo(sj).aj)s

// ¢ is a suitable supervised loss function, e.g.,
cross-entropy or MSE

5 Update policy parameters: 8 <— 0 — nVy.Z(9);

// n 1s the learning rate

6 until convergence;

Algorithm 19: Inverse reinforcement learning using
maximum entropy

= =
rate 1, number of iterations K
Output: Reward function R(s) = w | P (s)
1 Initialize reward parameter vector w randomly;
2 fork < 1to K do
o Faafirre ot e 1 N N
3 Compute expert feature expectations: tg = 5 > i_y D ier, (5);

Input: Expert demonstrations & = {t;} N s feature function ¢ (s), learning

4 Compute policy m,, using soft value iteration under current reward

R(s)=w ! Q(s):

5 Generate trajectories {7 }f']'.‘/izl by rolling out policy m,,;

Y ~ oY} o A e e = Vel i 1 o e - l JIM N
6 Compute learner feature expectations: i, = ; =1 ZNG?‘/_ P(s);
7 Compute gradient: ¢ = g — U
8 Update reward parameters: w < w + ng:

6.5 Federated Learning and
Distributed Models

Federated learning or collaborative learning [54] is a
subfield of machine learning [18], and it collaborates with

multiple entities or clients to train a model while ensuring
that the data remains decentralized [1]. A server sends a
distributed model to each client. Each individual client
utilizes this distributed model to train a local model with its
own dataset. Updates to the model are sent back to the
server, and the shared model is improved during the
collaborative process. Due to the decentralized nature of
clients’ data, there is no guarantee that data samples held
by each client are independently and identically distributed.
Federated learning is generally concerned with and
motivated by issues such as data privacy, data minimization,
and data access rights [57]. The objective function for

federated learning [19] is
K

f(wlaw%"' 7wK) - % i=1 f(xz) (6.3)
where K € N is the number of nodes, x; € R are the
weights of model as viewed by node ¢ € N, and f(-) is node i
‘s local objective function; it describes how model weights
x; conform to node i’s local dataset. The goal of federated
learning is to train a model on all of the nodes, optimize the
objective function, and achieve consensus on ;.

The distributed learning aims at training a single model
on multiple servers, and an underlying assumption is that
the local datasets are independent and identically
distributed. The difference between federated learning and
distributed learning lies in the properties of the local
datasets. Federated learning originally aims at training on
heterogeneous datasets.

In robotics, mobile robots learned navigation over
diverse environments by using the federated learning-based
method [25, 30, 61]. Federated learning is applied to
improve multi-robot navigation under limited bandwidth,
assisting better sim-to-real transfer. The pseudocode of
federated learning algorithm is shown in Algorithm 20.

Algorithm 20: Federated averaging algorithm

Input: Global model wg, number of rounds 7', number of clients K, local
epochs E, learning rate n
Output: Trained global model wy

1 forr=1toT do
2 Server selects a subset of clients ., € {1,2,..., K}
3 foreach client k € ., in parallel do
4 Client & receives global model w,_
5 Initialize u,!/(\,m “— wy_|
6 fore =1to E do
L. ateac (e) (e—1) 7 (e—1)
7 Client updates w, " < w, — VL (w,)
8 end
. (E)
9 Client sends w, " to server
10 end
11 Server updates model: wy < Y, e, ’;—fw/f,b) where ny, 1s the data size
atclientk,n =73, _ ny
12 end

to obtain better predictive performance. Ensemble learning
[2] typically refers to bagging (bootstrap aggregating),
boosting [39], or stacking/blending methods to induce high
variance among the base models [17]. Ensemble learning
trains two or more machine learning algorithms [18] by
using specific classification or regression [13, 39]. The
algorithms are generally referred to as “base models,” “base
learners,” or “weak learners.” Empirically, the ensembles
yield better results if there is a significant diversity among
the models [38, 44].

Mixture of Experts (MoE) represents a form of ensemble
learning. Each expert f;, 7 =1,2--- , N, takes the same
input x and produces output f;(x). Each weighting function
or gating function w takes input x and produces a vector of
outputs w(z);, ¢ = 1,2--- , N. Given an input x, the MoE

produces a single output: f(z) =), w(z), fi(x),

t=1,2--- , N. Both the experts and the weighting function
are trained by minimizing loss function, generally via
gradient descent. The model is trained by performing
gradient descent on the mean-squared error loss
L=5lye—flz) | k=1,2--- ,N.

In deep learning, the critical goal is to reduce the
computing cost. In deep learning, the output of MoE for
each query may involve a few experts’ outputs. Each expert
i has an extra “expert bias” b;, 1 = 1,2,--- , N. If an expert
is being neglected, then the bias increases and vice versa.
During token assignment, each token picks the top-k
experts, but with the bias added in. The expert bias matters
for picking the experts, but not in adding up the responses
from the experts.

6.6 Lab Session: Implementing
Perception Algorithms with MATLAB

At the end of this chapter, we would like to recommend all
readers complete the lab report. Please fill in the form
shown in Table 6.1 after each lab session (2 hours).

Table 6.1 Lab report for robotic vision

Name

Email

Lab date
Submitted date
Project title

Lab objectives

Configurations and settings
Methods

Workflow

Datasets

Input

Output

Testing steps

Bugs or problems

Result analysis
Conclusion/reflection

References

<First Name Last Name>

<firstname.lastname @mailbox >

<dd-mm-yy>

<dd-mm-yy>

Avoid Obstacles Using Reinforcement Learning for Mobile Robots
The objective is to train a mobile robot by using reinforcement
learning to avoid obstacles with a calibrated stereo camera
<The preferences, software, hardware, platforms, tools, etc.>
<The relevant scientific theories or concepts >

<The step-by-step procedure for the experiment>

<The data and materials for your experiments >

<image filename, size, resolution >

<image filename, size, resolution>

<Functional & non-functional testing methods step by step>
<The system error code, lines of the code>

<The tables, graphs, and figures, etc.>

<The strengths and weaknesses, or learned from this project>
https://au.mathworks.com/help/robotics/ug/avoid-obstacles-

using-reinforcement-learning-for-mobile-robots.html

Appendix: <Source codes with comments and line numbers

>

An example of this lab report is:

- Project title: Avoid Obstacles Using Reinforcement
Learning for Mobile Robots.

- Project objectives: The objective is to train a mobile
robot using a reinforcement learning algorithm to avoid
obstacles. By interpreting range sensor readings, the
robot learns to control its linear and angular velocities to
navigate without colliding in a known environment.

- Configurations and settings: MATLAB Online

« Methods: An occupancy map of a known environment
was employed to generate range sensor readings, detect
obstacles, and check collisions the robot may make. The
DDPG (Deep Deterministic Policy Gradient) agent
observed range sensor readings, the linear and angular

velocity controlled by using the DDPG-based
reinforcement learning algorithm.
- Implementation steps:

1.

Load a map matrix representing the environment.

Set up the range sensor and robot parameters.

Visualize the map and robot positions.

Create the environment model for actions,
observations, and rewards.

Define observation and action specifications.

Build and configure the DDPG agent.

Define the reward function.

Train the agent.

Simulate and visualize the agent’s performance.

10. Extend the model to simulate in new environments.

. Testing steps:

1. Verify rigid body elements.

2. Test joint connections.

3. Validate robot assembly.
4. Interact with the robot model.
5. Simulation and performance testing.

- Result analysis: The result analysis of the trained DDPG-
based mobile robot focuses on the robot’s ability to
navigate the environment efficiently, avoid obstacles, and
adapt to new scenarios. Key metrics include success rate
in avoiding collisions, path efficiency, and adaptability to
varied environments. Visual representations such as
trajectory plots are employed to assess performance. The
overall goal is to ensure that the robot learns optimal
control strategies to avoid obstacles.

« Conclusion/reflection: The DDPG-based reinforcement
learning model successfully enables a mobile robot to
avoid obstacles by learning optimal control actions based
on sensor readings. Through model training, the robot
improves its navigation efficiency and adaptability. The
model’s performance is validated through simulations,
which showcase its ability to navigate while minimizing
collisions; this makes it as a practical solution for
autonomous navigation tasks in dynamic environments.

« Readings: https://au.mathworks.com/help/robotics/ug/
avoid-obstacles-using-reinforcement-learning-formobile-
robots.html

6.7 EXxercises

Question 6.1 How to measure human IQ (Intelligence
Quotient)?

https://au.mathworks.com/help/robotics/ug/avoid-obstacles-using-reinforcement-learning-formobile-robots.html

Question 6.2 What are the characters of Reinforcement
Learning? What is the relationship between Reinforcement
Learning (RL) and Finite State Machine (FSM)?

Question 6.3 How to implement imitation learning? What
is the relationship between Reinforcement Learning (RL)
and Imitation Learning (IL)?

Question 6.4 How to implement inverse reinforcement
learning?

Question 6.5 Why GA algorithm can always find the right
solution of a given optimization problem?

Question 6.6 What are the differences between behavior
cloning and behavior analogy?

Question 6.7 How to ensure the security of datasets
during model training by using distributed models in deep
learning?

References

1. Alpaydin E (2009) Introduction to machine learning. MIT Press, Cambridge
2.
Andres O, Munilla J, Gorriz J et al (2016) Ensembles of deep learning
architectures for the early diagnosis of the Alzheimer’s disease. Int] Neural
Syst 26(7):1650025

3.
Ayer AJ (2001) Language, truth and logic. Nature 138(3498)
4.
Browne J (2007) Darwin’s origin of species: a biography. Grove Press
5.
Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies
with gradient descent is difficult. IEEE Trans Neural Netw 5(2):157-166
6.
Bengio Y, Lecun Y, Hinton G (2021) Deep learning for AI. Commun ACM
64(7):58-65
7.

Biever C (2023) ChatGPT broke the Turing test—the race is on for new ways
to assess Al. Nature 619(7971):686-689

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

Bird J, Kobylarz J, Faria D, Ekart A, Ribeiro E (2020) Cross-domain MLP and
CNN transfer learning for biological signal processing: EEG and EMG. IEEE
Access 8:54789-54801

Ertel W (2019) Introduction to artificial intelligence. Springer, Berlin

Fricke GM, Hecker JP, Griego AD, Tran LT, Moses ME (2016) A distributed
deterministic spiral search algorithm for swarms. In: IEEE/RS]J international
conference on intelligent robots and systems (IROS), pp 4430-4436

Gao X, Liu Y, Nguyen M, Yan W (2024) VICL-CLIP: enhancing face mask
detection in context with multimodal foundation models. In: ICONIP’24

Gao X, Nguyen M, Yan W (2023) Enhancement of human face mask
detection performance by using ensemble learning models. In:L. PSIVT, pp
124-137

Gashler M, Giraud-Carrier C, Martinez T (2008) Decision tree ensemble:
small heterogeneous is better than large homogeneous. In: International
conference on machine learning and applications, pp 900-905

George D et al (2017) A generative vision model that trains with high data
efficiency and breaks text-based CAPTCHAs. Science 358(6368)

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press,
Cambridge

Hernandez-Orallo J (2000) Beyond the Turing test.] Logic Lang Inform
9(4):447-466
[MathSciNet]

Polikar R (2006) Ensemble-based systems in decision making. IEEE Circuits
Syst Mag 6(3):21-45

Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and
prospects. Science 349(6245):255-260
[MathSciNet]

Kairouz P et al (2021) Advances and open problems in federated learning.
Found Trends Mach Learn 14 (1-2):1-210

Kontschieder P et al (2015) Deep neural decision forests. In: IEEE ICCV

Kriegeskorte N (2015) Deep neural networks: a new framework for
modeling biological vision and brain information processing. In: Annual
review of vision science, pp 417-446

Labbé M, Michaud F (2019) RTAB-Map as an open-source LiDAR and visual
simultaneous localization and mapping library for large-scale and long-term
online operation. J Field Robot 36(2):416-446

http://www.ams.org/mathscinet-getitem?mr=1787623
http://www.ams.org/mathscinet-getitem?mr=3382217

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436-444

Littman M (2015) Reinforcement learning improves behavior from
evaluative feedback. Nature 521:445-451

Liu B, Wang L, Liu M (2019) Lifelong federated reinforcement learning: a
learning architecture for navigation in cloud robotic systems. In: IEEE/RS]
international conference on intelligent robots and systems (IROS), pp 1688-
1695

McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in
nervous activity. Bull Math Biophys 5(4):115-133
[MathSciNet]

Mehtab S, Yan W, Narayanan A (2022) 3D vehicle detection using cheap
LiDAR and camera sensors. In: International conference on image and vision
computing. New Zealand

Ming Y, LiY, Zhang Z, Yan W (2021) A survey of path planning algorithms
for autonomous vehicles. Int J] Commercial Veh 14:97-109

Mnih V et al (2015) Human-level control through deep reinforcement
learning. Nature 518:529-533

Na S, Roucek T, Ulrich J, Pikman J, Krajnik T, Lennox B, Arvin F (2023)
Federated reinforcement learning for collective navigation of robotic
swarms. IEEE Trans Cogn Developmental Syst 15(4):1

Narendra KS, Parthasarathy K (1990) Identification and control of
dynamical systems using neural networks. IEEE Trans Neural Netw 1(1):4-
27

Norvig P, Russell S (2016) Artificial intelligence: a modern approach, 3rd
edn. Prentice Hall, Englewood Cliffs

Pan C, Yan W (2018) A learning-based positive feedback in salient object
detection. In: International conference on image and vision computing. New
Zealand

Pan C, Yan W (2020) Object detection based on saturation of visual
perception. Multimedia Tools Appl 79(27-28):19925-19944

Pan C, Liu J, Yan W, Zhou Y (2021) Salient object detection based on visual
perceptual saturation and two-stream hybrid networks. IEEE Trans Image
Process 30:4773-4787

Peng D (2025) Vision perception optimization and adaptive control for
resource-constrained platform: a Ping-Pong Ball Pickup & Place System.
Master’s thesis, Auckland University of Technology, New Zealand

http://www.ams.org/mathscinet-getitem?mr=10388

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Peng D, Yan W (2025) Test-time training with adaptive memory for traffic
accident severity prediction. Computers 14(5):186

Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study.]
Artif Intell Res 11:169-198

Rriedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a
statistical view of boosting. Ann Stat 38(2):337-374
[MathSciNet]

Raven J, Raven JC, Court JH (2003) Manual for Raven’s progressive
matrices and vocabulary scales. San Antonio

Schmidhuber J (2015) Deep learning in neural networks: an overview.
Neural Netw 61:85-117

Shah H, Warwick K (2009) Emotion in the Turing test: a downward trend for
machines in recent Loebner prizes. In: Handbook of research on synthetic
emotions and sociable robotics: new applications in affective computing and
artificial intelligence. Information Science, IGI

Silver D et al (2018) A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play. Science 362(6419):1140-
1144.

[MathSciNet]

Suk H, Lee S, Shen D (2017) Deep ensemble learning of sparse regression
models for brain disease diagnosis. Med Image Anal 37:101-113

Sutton R, Barto A (2018) Reinforcement learning: an Introduction, 2nd edn.
MIT Press, Cambridge

Tantiya R (2025) Design and implementation of a high DoF robot arm.
Master’s thesis, Auckland University of Technology, New Zealand

Turing A (1948) Machine intelligence. The essential Turing: the ideas that
gave birth to the computer age. Oxford University Press, Oxford

Turing A (1950) Computing machinery and intelligence. Mind 59(236):433-
460
[MathSciNet]

Vaswani A et al (2017) Attention is all you need. In: The conference on
neural information processing systems (NIPS), USA

Wang L, Li R, Sun J, Liu X, Zhao L, Seah HS, Quah CK, Tandianus B (2019)
Multi-view fusion-based 3D object detection for robot indoor scene
perception. Sensors 19(19):4092

http://www.ams.org/mathscinet-getitem?mr=1790002
http://www.ams.org/mathscinet-getitem?mr=3888768
http://www.ams.org/mathscinet-getitem?mr=37064

51.

52.
53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Wang X, Yan W (2020) Cross-view gait recognition through ensemble
learning. Neural Comput Appl 32(11):7275-7287

Webb S (2018) Deep learning for biology. Nature 554:555-557

Wechsler D (1939) The measurement of adult intelligence. Williams &
Witkins, Baltimore

Wei J, He J, Chen K, Zhou Y, Tang Z (2017) Collaborative filtering and deep
learning based recommendation system for cold start items. Expert Syst
Appl 69:29-39

Xu G, Yan W (2023) Facial emotion recognition using ensemble learning. In:
Deep learning, reinforcement learning, and the rise of intelligent systems,
pp 146-158. IGI Global

Yan W, Kankanhalli M (2009) Cross-modal approach for Karaoke artefacts
correction. In: Handbook of multimedia for digital entertainment and arts,
pp 197-218

Yan WQ (2019) Introduction to intelligent surveillance: surveillance data
capture, transmission, and analytics, 3rd edn. Springer, Berlin

Yan WQ (2023) Computational methods for deep learning: theory,
algorithms, and implementations, 2nd edn. Springer, Berlin

Younas F, Usman M, Yan W (2023) A deep neural network ensemble
framework for colorectal polyp classification. Multimedia Tools Appl
82:18925-18946

Younas F, Usman A, Yan W (2023) A deep ensemble learning method for
colorectal polyp classification with optimized network parameters. Appl
Intell 53:2410-2433

Yu X, Queralta J, Westerlund T (2022) Towards lifelong federated learning
in autonomous mobile robots with continuous sim-to-real transfer. Procedia
Comput Sci 210:86-93

Zhao H, Xu S, Yan W, Xu D (2025) Design and optimization of target
detection and 3D localization models for intelligent muskmelon pollination
robots. Horticulturae 11(8):905

© The Author(s), under exclusive license to Springer Nature Singapore Pte
Ltd. 2026

W. Q. Yan, Robotic Vision, Advances in Computer Vision and Pattern
Recognition

https://doi.org/10.1007/978-981-95-4360-1_7

7. Vision-Based Robotic Control

Wei Qi Yan!

(1) Department of Computer and Information Sciences,
Auckland University of Technology, Auckland, New
Zealand

Abstract

Robot manipulators (i.e., robot arms) are extensively
deployed in manufacturing, packaging, and processing
factories. The robot arm is linked with end-effector Zhao et
al (Horticulturae 11(8):905, 2025). In this chapter, visual
servoing is brought into vision-based robot control,
especially camera retreat will lead the robot to get the
destination based on the acquired images. The significance
of this chapter is to implement robot control via robotic
vision.

7.1 Basics of Visual Servoing

Visual servoing [5, 10] is the method of controlling a robot’s
motion using real-time feedback [20] from vision sensors to
execute tasks [15, 17]. The real-time information [8] from
vision sensors like cameras [12] will control robots. Visual
servoing is a model-free approach to actuate the robot
based on high-level task to be executed. In visual servoing,
the robot is instructed to move in order to align its current
task progress with the desired task and gradually reduce

https://doi.org/10.1007/978-981-95-4360-1_7

the errors between the two. We have target matrix and
current matrix, and visual servoing is implemented by using
cameras [1, 5, 27] to control robots. Mathematically, visual
servoing is to minimize the error [10]:

e(t) = f(m(t),a) — 1 (m(t), a) (7.1)
where e(-) € R is the error, t € R is the time, m(:) € R is
the collection of regions of interest in the image, and a is
the collection of camera intrinsic parameters and extrinsic
parameters. The function [14] f*(-) € R represents the
desired set of visual features, while f(-) € R reflects the
actual features [12].

Visual features are computable vectors extracted from
digital images [29], such as corner, edge, blob, contour
[28], motif, etc. Depending on the positioning of cameras
[12], visual servoing [4, 7] has two paradigms: eye-in-hand
and eye-to-hand [18]. The eye-in-hand camera is the visual
sensor mounted on a robot, and the eye-to-hand camera is
applied to monitor our environment [25, 33, 34] as shown in
Fig. 7.1. From the view angles of the two cameras, the
visual objects and field of view (FoV) [26] are different.
What we should know is that visual information is reliable
for robot locating. However, GPS information is not reliable
or weak because in a tunnel, GPS information will be lost.

Eye-to-hand camera

LiDAR camera

. Eye-in-hand camera
Screen display

Robotic wheel
Robotic wheel

Fig. 7.1 The eye-to-hand camera and eye-in-hand camera on a wheeled robot

Visual servoing [3] is to control the pose of robot’s end-
effector by using visual features extracted from the image
which contains two approaches [24]: Position/Pose-Based
Visual Servo (PBVS) and Image-Based Visual Servo (IBVS).
PBVS takes use of observed visual features, a calibrated
camera and a known geometric model of the target to
determine the pose of target with respect to the cameras [1,
12, 27]. 3D cameras are employed to detect object depth
[26]. LiDAR system is too expensive and may loss the details
of visual information. IBVS omits the pose estimation step,
and it adopts the image features directly. That means the
system has data conversation from image to image. The
desired camera pose with respect to the target is defined
implicitly by using the image features at the goal pose [1,
27].

PBVS usually makes use of depth cameras to obtain 3D
pose/position and orientation of the regions/objects of
interest [26]. The error term is the Cartesian pose
difference between the two. The servoing scheme [3, 22] is
to minimize it by moving the robot around, ideally toward
the final desired pose [11]. Based on the location of visual

object [26] in the image, the scheme generates the ideal
grasp pose for the end-effector and converges the robot to it
[36]. PBVS works with real-world poses which needs at least
a 6-DoF robot arm to successfully implement the solution
without getting stuck in local minima. Six DoF is the
minimum degrees of freedom with low risk to reach object
without singularity; our human body has 7-DOF at least.
PBVS makes use of robot inverse kinematics (IK) to convert
Cartesian control instructions into joint angles of the robot
[9]. The inverse kinematics means that the end-effector
needs to be moved to a position first if the manipulator is
required to be moved. Other joints will be moved near to the
object. Controversially, the forward kinematics (FK) refers
to that the foot of robots is required to move first, and then
the joints will be followed to the end-effector. The difference
between inverse kinematics and forward kinematics is the
computing costs and time. The inverse kinematics needs to
compute the joint chain; thus its computing is slow [29].

Since obtaining the information regards 3D pose
comprehends of the conversion from camera frame to robot
frame, camera calibration [11, 12] plays a critical role in
PBVS process [12]. The intrinsic parameters and extrinsic
parameters of the given cameras are related to camera
calibration. Camera calibration bridges the gap between
image space and 3D object space in the real world.

Compared to PBVS [24], IBVS is to omit the pose
estimation. The camera in hand, joint controller [9],
feedback, and feature extraction are the same. The
information fusion step is also the same [1, 27]. IBVS
extracts visual features and formulates the errors in image
plane. The desired image and the current image are
compared, and the differences will be calculated. The visual
servoing converges visual feature to the desired coordinates
and moves the robot accordingly in image space [22].

Visual feature extraction in IBVS is prone to camera
performance, synchronization issues, and computational

requirements [29]. Cameras [12] usually have high
definition (HD) or high resolution and high speed (i.e.,
frames per second). Computational requirements refer to
software and hardware. Hereinafter, the hardware refers to
GPUs and FPGAs, and the software links to the algorithms
for extracting visual features. The synchronization means
that two or many cameras [1, 27] are working together
within the same pace, and they will acquire and process the
images from the same scene [21].

The first step of IBVS is the projection of 3D object on a
2D image plane. Mathematically, the mapping from 3D
space to 2D space is based on transformation:
tr=X/ZecRandy=Y /Z € R, where Z # 0,

(X,Y, Z) € R3is a point location on a 3D object, and

(z,y) € R? is a pixel location on an image. The depth has
been disappeared on the image. IBVS differs fundamentally
from PBVS by not estimating the relative pose of the target.
The relative pose is implicit in the image features. The pose
is hidden or stored in the 2D images. IBVS is an image-to-
image approach, a kind of end-to-end approach. IBVS is
remarkably robust to vision-based robot control [15]. IBVS
is formulated to work with other image features such as
corner, straight line, circle, rectangle, etc.

7.2 Advanced Visual Servoing

A number of autonomous robot operations [16] are
employed to relieve the lack of labor problems [35]. Robots
with sufficient electric power have no errors, and they can
work without rests and save a vast of costs [16]. Hence,
human labors could be employed to other business or work.
Visual servoing [3] is one of the most important
technologies. Industries often need robots to be running at
lightning-fast speeds, and visual servoing is far from
achieving speedy performances [35]. Currently, our

hardware and software tools are still working slowly even
with supercomputing.

Computational bottlenecks in image processing and
inverse kinematics (IK) are on using GPUs and parallel
programming [4, 29]. In visual servoing [37], camera
retreat [6] refers to the cameras that need to be moved
back (or “retreated”) so as to capture an entire scene [21]
or visual object [26] within the viewing frustum. The
frustum is a visible area of visual scene [13, 30]. The
problem of camera retreat (moving back) is happened in an
IBVS system because the object is too large or too close.
The pseudocode of camera retreat algorithm is shown in
Algorithm 21.

Algorithm 21: Camera retreat algorithm

Input: Current position of camera C, target object position 7', minimum safe
distance dp;n, Step size s
Output: Updated camera position C
1 while distance(C, T) < duin do

// Compute direction vector from target to camera
C—71 .
2 | <=
// Move camera backward by step size
3 C «—C+Hs-
4 return C;

The camera position in 3D space is adjusted through affine
transformation such as rotation, scaling, and translation.
Relatively, the object could be moved or scaled to match the
clipping window of the image. The clipping operation refers
to select regions of an image to display. A clipped image is
shown in Fig. 7.2.

(a) The full image

1O A

(b) The clipped image
Fig. 7.2 An example of camera retreat. (a) The full image and (b) the clipped
image

The scaling change is achieved by Z-axis translation. The
XY / Z hybrid schemes take into account of X-axis and Y-
axis as one group and Z-axis as another group. Thus, if the
movement of a robot is planned, we are able to fully utilize
the two groups to reach the destination. XY / Z-partitioned
methods eliminate camera retreat [6] by using IBVS to
control the degrees of freedom (DoF) while taking a
different controller for the remaining degrees of freedom
[9]. It is advantageous to select the longest line segment of
trajectory or path. The longest line segment in robot moving
will save our time and energy.

For a rotated camera, the points will naturally be moved
along circular arcs with the assigned radius. The edges and
corners of an object will be rotated correspondingly. The
desired rotational rate is obtained by using a simple

proportional control law. The proportional control law has
been harnessed in the control of a bicycle or a car with four
wheels. The simplest example is a bicycle with two wheels.
When a car or a bicycle is moving, all wheels should follow
the proportional control law with different radii.

If a robot is armed with cameras, visual features are
projected from one or more images [12] onto spherical
image plane and compute the control law in terms of
spherical coordinates. The spherical plane refers to the
surface of 3D sphere.

In polar coordinates, image point is denoted as

(r,¢) € R%, r € Ris the distance, r = Vu? + v2,u,v € R,
and u-axis and v-axis are the image coordinates. The angle
from u-axis to a line is ¢ = tan™ (%) € R, u # 0. The two
coordinate representations are related to u = 7 cos (¢) € R
and v = r sin (¢) € R. The world point

(X,Y, Z)T, X,Y,Z € R in the camera frame is projected

onto the surface of sphere at the point (z, y, z)T, x,Y,z € R,
r=X/Ry=Y /R,z=Z/R, Rc R, R+# 0isthe
distance from the camera origin to the world point. A
minimal spherical coordinate system comprises the angle of

colatitude # =sin™' (y /r) € R, 0 € [0,7] € R,

r=+/x2 + 42 € R, 7 # 0. Thus, the feature vector is
p=(6,9), ¢ =sin"*(£) € R. Hence, X = R- cos (6) cos (¢)
,Y = R-cos (0) sin (¢), Z = R- sin (6),
R=vX?+Y2+4 22

The space of spherical images and the space of 2D
images can be transformed mutually. The spherical mapping
projects our images onto the standard sphere as shown in
Fig. 7.3. A spherical camera eliminates the need to explicitly
keep visual features in the field of view (FoV) with both
position-based visual servoing and hybrid schemes [37]. For
a spherical camera, this ambiguity is reduced. The spherical

cameras are independent on the FoV. In six-axis arm-type
robot, a perspective camera with default parameters is
mounted on the robot’s end-effector, and its axes are
aligned with the coordinate frame. This system drives the
robot to the desired pose. In a mobile robot [2], a camera is
mounted on a mobile robot that can be moved in a planar
environment, and the visual servo controller will drive the
robot until its view of landmarks matches the desired view
[3, 37].

Cube

Fig. 7.3 From cube to sphere

7.3 Vision-Based Navigation and Path
Planning Algorithms

Robot navigation is defined as the combination of three
fundamental competences: (1) self-localization, (2) path
planning,[23] and (3) map building and map interpretation.
Vision-based navigation or optical navigation makes use of
computer vision algorithms and optical sensors, this
includes laser-based range finder and photometric cameras,
and it extracts the visual information required to the
localization in the surrounding environment [33, 34].
Google and Apple have provided precise navigation and
locating service in outdoor environment [32]. Image-based
navigation methods attract much attention as a powerful
alternative to traditional map-based navigation. The Google
Street View is a method featured in Google Map that allows

users to navigate through large-scale outdoor environment
with 360 degree imagery. However, Google Street View
cannot provide timely updates because it requires immense
data; this method involving a panoramic camera has not
been extended due to its data collection permission.

Our early prototype [32] was able to locate current
position by matching query image in the database as shown
in Fig. 7.4. If a match is found, the system roughly figures
out the position of query image based on position by using
SIFT feature detection. It can roughly locate a query image
on the map by using IPM (Inverse Perspective Mapping).
Thus, it enables interactive navigation and knowledge
sharing among users [31]. By using QR codes with the
navigation, the current location and the shortest path to the
destination are available [19].

Fig. 7.4 Precise indoor navigation without GPS information within a building

Robot localization denotes the robot’s ability to establish
its own position and orientation. Path planning [23] is
effectively an extension of localization; it requires the
determination of robot’s current position and a position of a
goal location, both within the same frame of reference or
coordinates system.

Self-driving vehicles will firstly make use of global path
planning [23] to decide which roads to be taken to arrive
the destination. When these vehicles are on the road, they
have to be constantly adaptive to the changing environment.
This is where local path planning methods allow the vehicle
to plan a safe and fast path to the target location.

7.4 Lab Session: Visual Servoing with
MATLAB

At the end of this chapter, we would like to recommend all
readers complete the lab report. Please fill in the form
shown in Table 7.1 after each lab session (2 hours). An
example of this lab report is:

- Project title: Automated Parking Valet with ROS 2

Table 7.1 Lab report for robotic vision

Name <First Name Last Name>

Email <firstname.lastname@mailbox>

Lab date <dd-mm-yy>

Submitted date <dd-mm-yy>

Project title Automated Parking Valet with ROS 2

Lab objectives The objective is to simulate an autonomous

parking system
by using ROS

Configurations and <The preferences, software, hardware,
settings platforms, tools, etc.>

Methods <The relevant scientific theories or concepts >

Name <First Name Last Name >

Workflow <The step-by-step procedure for the
experiment>

Datasets <The data and materials for your experiments>

Input <image filename, size, resolution >

Output <image filename, size, resolution>

Testing steps <Functional & non-functional testing methods
step by step>

Bugs or problems <The system error code, lines of the code>

Result analysis <The tables, graphs, and figures, etc.>

Conclusion/reflection <The strengths and weaknesses, or learned
from this project >

References https://au.mathworks.com/help/ros/ug/
automated-

valet-using-ros2-matlab.html

Appendix: <Source codes with comments and line
numbers>

Project objectives: The goal of this experiment is to
simulate an autonomous parking system by using ROS
(Robot Operating System) to achieve automatic vehicle
navigation, path planning, and parking operations.
Configurations and settings:

1. MATLAB Online
2. ROS node configuration
3. ROS message topics

4. Callback function setup

5. Simulated vehicle configuration

https://au.mathworks.com/help/ros/ug/automated-valet-using-ros2-matlab.html
https://au.mathworks.com/help/ros/ug/automated-valet-using-ros2-matlab.html

6.

Path planning and control strategy

« Methods: Initially, we upload a route plan and the
specified cost map by using the behavior planner and path
analyzer. The control node is responsible for longitudinal
and lateral controllers. We initialize the simulation by
sending the first velocity message and current pose
message. This message causes the planner to start the
planning loop. The main loop waits for the behavioral
planner to say the vehicle reached the park position. The
parking maneuver callbacks are slightly different from the
normal driving maneuver.

- Implementation steps:

1.

Load a route plan and a given cost map

. ROS initialization

. Publisher and subscriber creation

. Callback functions

. Vehicle status update

Goal reach check

. Visualization and simulation shutdown

. ROS network shutdown

. Testing steps:

1. Functional testing
2. Simulation testing
3. Edge case testing
4. Parking maneuver

« Result analysis: Through visualization, the vehicle
follows the planned path without deviating or colliding
with any obstacles. The path planning successfully guided
the vehicle from the starting point to the target spot.

« Conclusion/reflection: The autonomous parking system
successfully achieved vehicle self-parking in the
simulation, its effectiveness in path planning, vehicle
control, and real-time feedback is demonstrated. Through
accurate path planning and precise control commands,
the vehicle was able to smoothly travel from the starting
point to the destination spot and safely stop upon arrival.

« Readings: https://au.mathworks.com/help/ros/ug/
automated-valet-using-ros2-matlab.html.

7.5 Exercises
Question 7.1 What is visual servoing?

Question 7.2 What is advanced visual servoing?
Question 7.3 How to implement camera retreat?

Question 7.4 How do the current algorithms play their
roles in robotic navigation, planning, and scene
understanding?

https://au.mathworks.com/help/ros/ug/automated-valet-using-ros2-matlab.html

References

1.

10.

11.

Baek], Lee, E, Park M, Seo D (2015) Mono-camera based side vehicle
detection for blind spot detection systems. In: International conference on
ubiquitous & future networks, pp 147-149

Bouzoualegh S, Guechi E-H, Kelaiaia R (2019) Model predictive control of a
differential-drive mobile robot. Acta Universitatis Sapientiae, Electr Mech
Eng 10(1):20-41

[Crossref]

Cao C (2022) Research on a visual servoing control method based on
perspective transformation under spatial constraint. Machines 10(11):1090
[Crossref]

Colombo FT, de Carvalho Fontes JV, da Silva MM (2019) A visual servoing
strategy under limited frame rates for planar parallel kinematic machines.]
Intell Robot Syst 96(1):95-107

[Crossref]

Cong VD, Hanh LD (2023) A review and performance comparison of visual
servoing controls. Int J Intell Robot Appl 7(1):65-90
[Crossref]

Corke P, Hutchinson SA (2001) A new partitioned approach to image-based
visual servo control. IEEE Trans Robot Autom 17 (4):507-515
[Crossref]

Corke P, Hutchinson S, Gans NR (2002) Partitioned image-based visual
servo control: Some new results. In: Sensor based intelligent robots (LNCS
2238)

Cover T, Thomas J (1991) Elements of information theory. John Wiley &
Sons, London

Cui M, Liu H, Wang X, Liu W (2023) Adaptive control for simultaneous
tracking and stabilization of wheeled mobile robot with uncertainties.]
Intell Robot Syst 108(3):46

[Crossref]

Gans NR, Hu G, Shen J, Zhang Y, Dixon WE (2012) Adaptive visual servo
control to simultaneously stabilize image and pose error. Mechatronics
22(4):410-422

[Crossref]

Han T, Zhu H, Yu D (2024) Data-driven model predictive control for
uncalibrated visual servoing. Symmetry 16(1):48
[Crossref]

https://doi.org/10.2478/auseme-2018-0002
https://doi.org/10.3390/machines10111090
https://doi.org/10.1007/s10846-019-00982-7
https://doi.org/10.1007/s41315-023-00270-6
https://doi.org/10.1109/70.954764
https://doi.org/10.1007/s10846-023-01908-0
https://doi.org/10.1016/j.mechatronics.2011.09.008
https://doi.org/10.3390/sym16010048

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Hane C, Sattler T, Pollefeys M, Heng L, Lee GH, Fraundorfer F, Furgale P
(2017) 3D visual perception for self-driving cars using a multi-camera
system: calibration, mapping, localization, and obstacle detection. Image
Vision Comput 68:14-27

[Crossref]

Kim D, Choi J, Yoo H, Yang U, Sohn K (2015) Rear obstacle detection system
with fisheye stereo camera using HCT. Expert Syst Appl 42:6295-6305
[Crossref]

Kivinen J, Warmuth MK (1998) Relative loss bounds for multidimensional
regression problems. In: Advances in neural information processing
systems, pp 287-293

Klette R (2014) Concise computer vision: an introduction into theory and
algorithms. Springer, London
[Crossref]

Koch M (2018) Artificial intelligence is becoming natural. Cell 173(3):531-
533
[Crossref]

Kriegeskorte N (2015) Deep neural networks: a new framework for
modelling biological vision and brain information processing. Ann Rev Vision
Sci 1(1):417-446

[Crossref]

Lalonde M, Byrns D, Gagnon L, Teasdale N, Laurendeau D (2007) Real-time
eye blink detection with GPU-based SIFT tracking. In: Canadian conference
on computer and robot vision, pp 481-487

LiJ (2014) Tour navigation: a cloud based tourist navigation system.
Master’s thesis, Auckland University of Technology, New Zealand

Littman M (2015) Reinforcement learning improves behavior from
evaluative feedback. Nature 521:445-451
[Crossref]

Liu X (2023) Vehicle-related scene understanding using deep learning. PhD
thesis, Auckland University of Technology, New Zealand

Machkour Z, Ortiz-Arroyo D, Durdevic P (2021) Classical and deep learning
based visual servoing systems: a survey on state of the art. J Intell Robot
Syst 104(1):11

[Crossref]

Ming Y, LiY, Zhang Z, Yan W (2021) A survey of path planning algorithms
for autonomous vehicles. Int] Commer Veh 14:97-109
[Crossref]

https://doi.org/10.1016/j.imavis.2017.07.003
https://doi.org/10.1016/j.eswa.2015.04.035
https://doi.org/10.1007/978-1-4471-6320-6
https://doi.org/10.1016/j.cell.2018.04.007
https://doi.org/10.1146/annurev-vision-082114-035447
https://doi.org/10.1038/nature14540
https://doi.org/10.1007/s10846-021-01540-w
https://doi.org/10.4271/02-14-01-0007

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Peng Y-C, Jivani D, Radke R], Wen J (2020) Comparing position- and image-
based visual servoing for robotic assembly of large structures. In: IEEE 16th
international conference on automation science and engineering (CASE), pp
1608-1613

Petrushin VA (2005) Mining rare and frequent events in multi-camera
surveillance video using self-organizing maps. In: ACM international
conference on knowledge discovery in data mining, pp 794-800

Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T (2007) Robust object
recognition with cortex-like mechanisms. IEEE Trans PAMI 29(3):411-426
[Crossref]

Shen Y, Yan W (2018) Blindspot monitoring using deep learning. In: IEEE
IVCNZ’'18

Shen W, Wang X, Wang Y, Bai X, Zhang Z (2015) DeepContour: a deep
convolutional feature learned by positive-sharing loss for contour detection.

In: IEEE conference on computer vision and pattern recognition, pp 3982-
3991

Stoer J, Bulirsch R (1991) Introduction to numerical analysis, 2nd edn.
Springer, Berlin

Sung K, Shirley P, Baer S (2008) Essentials of interactive computer
graphics: concepts and implementation. CRC Press, Boca Raton
[Crossref]

Wang L (2012) iNavigation: an image based indoor navigation system.
Master’s thesis, Auckland University of Technology, New Zealand

Wang L (2013) iNavigation: an image based indoor navigation system.
Multimedia Tools Appl 73:1597-1615
[Crossref]

Yan WQ (2019) Introduction to intelligent surveillance: surveillance data
capture, transmission, and analytics, 3rd edn. Springer, Berlin
[Crossref]

Yan WQ (2023) Computational methods for deep learning: theory,
algorithms, and implementations, 2nd edn. Springer, Berlin
[Crossref]

Ye Z, He Y, Pieters RS, Mesman B, Corporaal H, Jonker PP (2011)
Bottlenecks and tradeoffs in high frame rate visual servoing: a case study.
In: IAPR conference on machine vision applications, pp 55-58

Zhao H, Xu S, Yan W, Xu D (2025) Design and optimization of target
detection and 3D localization models for intelligent muskmelon pollination

https://doi.org/10.1109/TPAMI.2007.56
https://doi.org/10.1201/b15723
https://doi.org/10.1007/s11042-013-1656-9
https://doi.org/10.1007/978-3-030-10713-0
https://doi.org/10.1007/978-981-99-4823-9

37.

robots. Horticulturae 11(8):905
[Crossref]

Zhou Z, Guo], Zhu Z, Guo H (2024) Uncalibrated visual servoing based on
Kalman filter and mixed-kernel online sequential extreme learning machine
for robot manipulator. Multimedia Tools Appl 83(7):18853-18879
[Crossref]

https://doi.org/10.3390/horticulturae11080905
https://doi.org/10.1007/s11042-023-16381-y

© The Author(s), under exclusive license to Springer Nature Singapore Pte

Ltd. 2026

W. Q. Yan, Robotic Vision, Advances in Computer Vision and Pattern Recognition
https://doi.org/10.1007/978-981-95-4360-1_8

8. Computational Tools for
Robotic Vision

Wei Qi Yant

(1) Department of Computer and Information Sciences,
Auckland University of Technology, Auckland, New
Zealand

Abstract

In this chapter, we embark on Robot Operating System (ROS),
and it was designed as middleware for robot instruction. The
challenges of modern computing will be spelt out, and the
multicore computing and multithread computing are
expounded. GPUs are utilized to accelerate our computing for
robotic vision and robotic control for autonomous systems.
Python programming is taken into account as the example to
specify the supercomputing. Another is mobile computing, and
the sensor data is gained by using MATLAB. The significance
of this chapter is to implement robotic vision through mobile
computing and supercomputing.

8.1 Robot Operating System (ROS)

Robot Operating System (ROS) [3, 19] is a framework or a
collection of software libraries, and it assists developers to
create robotic applications. With our application development,
our data will be exported to the ROS system, and ROS will be
linked to hardware automatically. ROS was designed as
middleware, and it provides services such as hardware

https://doi.org/10.1007/978-981-95-4360-1_8

abstraction, device control, message passing between
processes, and package management.

Pertaining to modularity, ROS breaks down a complex
robotic system into manageable components, called as nodes.
Each node performs a specific task and communicates with
other nodes. Moreover, ROS provides a layer of abstraction
between hardware and software, and our developers have not
to care about the underlying hardware specifics. In
communications, ROS offers a flexible and efficient
communication infrastructure within the same machine or
across multiple machines on a network. Regarding tools, ROS
comes with a suite of powerful tools for debugging,
visualization, and simulation. With regard to package
management, ROS organizes code into packages, and the code
can be easily shared and reused, conveniently integrated into
the third-party software.

ROS 2 [25] is the second generation of the Robot Operating
System (ROS), and it was designed with real-time
performance. It utilizes Data Distribution Service (DDS) as the
communication framework that enables reliable, real-time, and
scalable communications between distributed systems. ROS 2
puts forward the enhanced security features, including secure
communications and data encryption. The feature avoids the
risk of attacks such as man-in-the-middle, the attacks are
possible to exist between ROS and robots, and it ensures
information security [4]. ROS 2 is better suited for
coordinating multiple robots working together (co-work). ROS
accommodates better support for multiple operating systems,
including Microsoft Windows and Apple macOS. The operating
system supplies with the improved tools for testing, debugging,
and monitoring robotic systems [20, 23, 24].

MATLAB released two versions each year, namely a and b
versions. The ROS Toolbox showcases an interface connecting
MATLAB and Simulink with the Robot Operating System (ROS
and ROS 2). MATLAB has links and interface with ROS. With
the toolbox, our users are able to design a network of ROS
nodes; typically, we combine MATLAB or Simulink together to
generate ROS nodes with the existing ROS network. The

toolbox includes MATLAB functions to visualize and analyze
ROS data by recording, importing, and playing back ROS files.
ROS files have been employed to multiple purposes. The
toolbox verifies ROS nodes via simulation by connecting to
external robot simulators.

MATLAB accommodates an example of how to park a car by
using ROS, and it is called car valet. The example consists of
localization, perception, planning, and inference [5, 13, 14],
and vehicles [1, 2]. The planning method encompasses
behavior planning [16], decision-making [12, 13], goal check,
path planner, path smoother, velocity profiler, etc. All robots
[1, 15] are the same in operations no matter flying in sky,
moving on ground, or swimming under water, and they need to
be linked to ROS system.

8.2 Modern Computing for Robotics

8.2.1 Supercomputing

Supercomputing refers to historically vector computers, but
now parallel vector. Vector computation is based on vectors in
linear order. All elements of a vector could be calculated
simultaneously. MATLAB computing is based on vector
operations. A master computer can get all information from the
distributed ones [18].

High-Performance Computing (HPC) is to resolve problems
via supercomputers with fast networks and data visualization.
Every year, the world top 500 computer list, namely TOP500
list, has been updated twice since 1993. In sequential
computing or serial computing, the components of a program
are executed step by step to produce correct results. For
instance, arithmetic operations, such as addition, subtraction,
multiplication, and division, will be executed in the same time,
no matter which operation will be executed, and the final
operations are all addition-based. Parallelism is a condition
wherein multiple tasks or distributed parts of a task run
independently and simultaneously on multiple processors. As

we know, OpenAl needs a vast number of GPUs to train their
GPT models.

A process is a program in execution with its own address
space, memory, data stack, etc. under one operating system.
Multithread computing means there are a number of threads,
while the threads are employed for various purposes such as
matrix addition, subtraction, multiplication, etc. The multiple
threads execute within the same process and share the same
context.

The multithreading in Python is listed in Fig. 8.1. For
example, Python programming is conducted to implement fork-
join model for parallel programming. In this example, we load
the libraries: threading and time, and we define the two
threads: cube and rectangle; we join them together. The
executive time is obtained after the two threads are working
together. In Fig. 8.2, the fork model is needed, after completed
each thread, the master thread will join them together.
Previously, it was manually assigned in programming time;
now MATLAB system automatically finds GPU resources in run
time.

© inport threading
import time

def calc_square(numbers):
for n in numbers:
print(f'\n{n} ~ 2
time.sleep(@.1)

{n*n}")

def calc_cube(numbers):
for n in numbers:
print(f'\n{n} ~ 3 = {n*n*n}"')
time.sleep(0.1)
numbers = [2, 3, 5, 8]

start = time.time()

square_thread = threading.Thread(target=calc_square, args=(numbers,))
cube_thread = threading.Thread(target=calc_cube, args=(numbers,))

square_thread.start()
cube_thread.start()

square_thread.join()
cube_thread.join()

end = time.time()

print('Execution Time: {}'.format(end-start))

Fig. 8.1 Multithreading in Python

Parallel Task | Parallel Task Il Parallel Task Il

-

Master Thread
Parallel Task | Parallel Task Il Parallel Task Il
Master Thread /,‘-_-;\\ ’a’f_—-_:\\\ R
e —— —

Fig. 8.2 Fork-join model

In Fig. 8.3, multithreading for matrix multiplication is taken
into account. In the beginning, Python libraries, NumPy and
multiprocessing, are loaded, and two matrices are multiplied
by using inner product of vectors. The given matrix is
segmented to 4 X 4 blocks, and they are multiplied together,
respectively. Finally, the results are generated as the output.

The matrix multiplication is based on operation addition. No
matter how complicated the multiplication of matrices is, all
arithmetic multiplications are based on hardware adders. They
are operating with binary numbers in circuits of a computer
system. In 1 second, how many addition operations can be
carried out for the binary digits is applied to measure the
computing speed of the processor.

() import numpy as np
from multiprocessing import Pool

Define the matrix multiplication function
def matrix_multiply(args):

A, B = args

return np.dot(A, B)

Create two random matrices of size 1000x1000
A = np.random.rand (1000, 1000)
B = np.random.rand(1000, 1000)

Split the matrices into 4 parts
A_parts = np.array_split(A, 4, axis=1)
B_parts = np.array_split(B, 4)

Create a multiprocessing pool with 4 workers
pool = Pool(4)

Map the matrix multiplication function to the 4 parts of the matrices
C_parts = pool.map(matrix_multiply,
[(A_part, B_part) for A_part, B_part in zip(A_parts, B_parts)])

Concatenate the parts of the result matrix
C = np.concatenate(C_parts, axis=1)

print(C)

Fig. 8.3 Parallel computing for matrix multiplication in Python

Regarding matrix multiplications, two matrices
A = {ai;} € R"" and B = {b;;} € R"*" are multiplied
together, C = A x B = {¢;;} € R"", a;;€ R, b;; € R, ¢;; € R.
The corresponding matrix will be shown as

cij: : :ka’ikkaﬁi)j)k:l,z,“’ ,’n,nEZ+ (81)

In parallel computing, ¢;; is independent of 7 € R and j € R.
If one element is calculated, all elements of the matrix will be
computed to completion.

8.2.2 GPU Acceleration

In robotics, we have the challenges in computing acceleration
from CPUs and GPUs. CPUs are slower, and GPUs are faster.
Regarding CPUs, we have multicore computing or multithread
computing. Graphics Processing Unit (GPU) is a rapid way for
us to train Large Language Models (LLMs). Pertaining to the
games like Minecraft, GPUs will accelerate the game play.

A GPU is a specialized electronic circuit to accelerate the
creation of images in a frame buffer for output to a display
device. Modern GPUs are efficient at manipulating computer
graphics and image processing. In a personal computer, a GPU
can be presented on a video card or embedded on the
motherboard. Previously, a picture was drawn in scan line
order of pixels, which needs long time. Now GPUs render the
picture in the same time for all pixels. GPU computing is
powerful for supercomputing. Regarding the architecture of
GPUs, we have graphics memory control, graphics and
computer array, unit, bus interface for communication, video
processing unit, display interface, etc.

MATLAB supports for CUDA-empowered NVIDIA GPUs, and
it has the ability to run workers locally on a desktop. CUDA
(i.e., Compute Unified Device Architecture) was created by
Nvidia in 2006; it is a parallel computing platform and
application programming interface (API) that allows software
to facilitate with GPUs. CUDA can accelerate general-purpose
processing.

MATLAB offers computer cluster and grid support with
MATLAB Distributed Computing Server. MATLAB provides the
interactive and batch execution of parallel applications. The
distributed arrays and Single Program Multiple Data (SPMD)
are constructed for large dataset handling and data-parallel
algorithms.

Google Colaboratory or Google Colab allows us to write and
execute Python codes in a web browser. Google Colab is
adopted extensively in the machine learning community with
applications [10]. In deep learning and robotic intelligence
[17], transfer learning and ensemble learning as well as

federated learning and distributed learning are employed to
enhance the classification ability of deep learning models. All
the models need parallel computing and GPU computing.

8.2.3 Mobile Computing for Robotics

Mobile computing means we conduct programming for mobile
devices, while robots are moving around from one place to
another by using mobile communications based on robotic
vision [26]. Cloud computing for robotics is associated with
mobile computing. We archived data in the cloud. Multicore
processors are multiple processors (cores) based on a single
chip, such as CPUs. With regard to programming, we allocate
one thread for each core. The comparisons of two laptops with
and without GPUs are shown in Figs. 8.4 and 8.5. Parallel
computing is simultaneous adoption of multiple processors.
The cables are needed to link different computers together.
The CPU workstation cannot move around, but laptops can.
Cluster computing is a hierarchical combination of commodity
units to build parallel system within a tree structure.

Performance E@ Run new task
g CPU1 GHz GPU Intel(R) UHD Graphics
s

?_isk 0(C)
N J[YYE:Fi

G?U.O. -

GPU1

tilizatior Shared GPU memary Ditver vemior 31.0.101.4502
5% 1.1/7.8 GB 15/06/2023
DirectX version: 12 (FL12.1)

on: PCl bus 0, device 2, function 0

1.1/7.8 GB

Fig. 8.4 A GPU computer

@ @ :“:‘t‘i:gix?n“or O L4 CPU Memory Energy Disk Network
Process Name % CPU CPU Time Threads Idle Wake Ups Kind % GPU GPU Time PID User
distnoted 0.0 0.52 2 o Apple 0.0 0.00 482 _spotlight
Google Chrome Helper (Renderer) 0.0 7:36.45 23 1 Apple 0.0 0.00 1489 wyan
distnoted 0.0 0.51 2 0 Apple 0.0 0.00 1585 _gamecontrolle
distnoted 0.0 0.49 2 o Apple 0.0 0.00 431 nsurlsessiond
akd i T) 0.0 0.00 7880 oot
Spprtragit Core 1 — Efficiency Core 2 — Efficiency W i 499 ASET, yan
ContextStoreAgent 0.0 0.00 1212 wyan
B siri 0.0 0.00 1660 wyan

promotedcontentd 0.0 0.00 3193 wyan
distnoted 0.0 0.00 1599 _applepay
distnoted 0.0 0.00 499 _accessoryupc
distnoted 0.0 0.00 21m rmd
distnoted Core 6 — Perform 0.0 0.00 395 _locationd
distnoted 0.0 0.00 620 _securityagent
distnoted 0.0 0.00 488 _appleevents
nbagent 0.0 0.00 82704 wyan
distnoted Core 7 — Perform Core 8 — Performance 0.0 0.00 265 _coreaudiod
askpermissiond 0.0 0.00 1664 wyan
distnoted 0.0 0.00 1484 _audiomxd
callservicesd 0.0 0.00 1226 wyan
distnoted 0.0 0.51 2 o Aople 0.0 0.00 332 _cmiodalassist

System: Threads: 3,268

User: Processes: 694

Idle: 79.42%

Fig. 8.5 A multicore computer

Wireless communications like Wi-Fi are the must for moving
robots. The cabled connections to mobile robots are not
possible. Robots need cordless communications. MATLAB
offers hardware infrastructure for parallel computing as shown
in Figs. 8.6 and 8.7. Thus, the mobile computing has:

« Connection: Connect to a MATLAB session running on
MathWorks Cloud. Cloud can save a huge amount of data.

-
ENEEEEENEEEEEER
EENEEENNEEEEEEN
EEEEEEENEEEEEEE

mmm GPU Cores nmm
EEEEEEEENEEEEEER

= C—) | SEiininianii
4 GPU | Dsvice Memory |
7L (=
% M

N

Multicore CPU

o

MATLAB
Parallel Computing Toolbox

Fig. 8.6 MATLAB hardware configuration for GPUs

File Storage

Mo
Mrryerr™
M

Multicore CPU

Fig. 8.7 MATLAB hardware configuration for clusters

. Acquisition: Acquire data from device sensors—Ilike the
accelerometer and GPS—and analyze the data in MATLAB.
GPS can locate robots in real time.

« Capturing: Take pictures and record video/audio for further
processing and analysis [22]. We upload multimodal data to
the Internet [©].

. Teaching and Learning: Mobile device is powerful and
flexible for teaching purposes [17].

MATLAB acquires data from built-in sensors [9] on mobile
device and stream sensor data directly to the MathWorks

Cloud. The data includes:

. Acceleration on three axes (z,y, z € R)

. Angular velocity on three axes (z,y,z € R)

. Magnetic field on three axes (z,y, z € R)

. Orientation (azimuth, pitch, and roll) (o, a,, o, € R)

. Position (latitude, longitude, altitude, horizontal accuracy,
speed, and course). The concept course refers to bearing
angle.

MATLAB Mobile sends all commands that were entered on
the device to the cloud for evaluations. Autocomplete in
MATLAB Mobile makes typing easier. MATLAB Mobile displays

thumbnails and larger previews when figures are created or
updated with MATLAB commands. MATLAB Mobile deletes
unwanted commands to improve scrolling performance in

history.

In Fig. 8.8, we list the functions of MATLAB Mobile as
shown in Fig. 8.8a, the commands windows in Fig. 8.8b, the
sensors in Fig. 8.8c, the examples in Fig. 8.8d, and the settings
in Fig. 8.8e. The example in Fig. 8.9 shows Logging
Accelerometer data from MATLAB Mobile by using MATLAB
Online. It indicates how to manipulate and visualize data from

a smartphone or tablet accelerometer.

e —

eterDataExample.mix
rometarDotaEramgle
arometarDataExompla jox with properties:

Device: *WIET

VOG- ALIDI2c36) Angular Velocity

Camnectd: 1
* Logokng: O
wai lableCaseras: (back'
Back.1" “Back.2' 'back.3 -fromt')
P Avallablenicrephones;
{"VOG-ALLO-Back’ ‘VOG-AL10-bottes'}
Selecteddicrophane:
* BMobil le.mix VOG-AL10-Back
ATUABNobicE xomple
InitialTimestamp —
= AccelerationsensorEnabled: 1
Angul arVatoc | {ysensorErabled: @ Positio °
MagnetiesensorEnabled: 1

» Commands Orientationsensorenabled: 1
Pasiti

nSensorEnsbled: 8
‘ophoneenabled: 1

Q Examples
B Senings

® Hep

(a) (b)

Fig. 8.8 MATLAB Mobile interface

(c) (d)

KEYBOAND SETTINGS

MATLAB Keyboard

PREDICTIVE TEXT
MATLAB Commands []
MATLAB Scripts [}
FONT SZE

——
HTORY SETTHGS
Clear Al History
ABOUT - VERSION 860
License Agreement

Third Party Licenses

Sansialios

(e)

® TN Rows 108 E,
E:\’:, 25 Open L} Find ° =
& save As Columns{3_ 7 5? ﬁB k}#“i‘”"“ = I A = L\ f: \\N‘f\" -
New from S Yy l =) Plot Options
Selection + &3 Print + |2 GoTo k boxchart freqz impz stepz grpdelay phasedelay phasez &
VARIABLE NAVIGATE EDIT TRANSFORM SELECTION PLOTS: Acceleration.Z(108)
¢ 3 EG O !> MATLABDve > Examples » R2024b > > Logging
" ~ Files ¢ |7 LoggingAccelerometerDataExampte mix X | Figure 1 % Acceleration X
& Name = | MATLAB = Dat. 1 1200x3 timetable
= B fieldactivities.mat " B £ 2 3
; i = Logging Accelerometer Data @ |x & 2
=5 = "
| This example shows how to manipulate and visualize data coming from B8 b W . M = mw
‘,\'\‘ a smartphone or tablet accelerometer. 5
g -27.2668 Min 14,4075 Min -22.2961
0 The accelerometer is a sensor that measures the rate of change of 229218 Max 517312 Max 191941
o 7 A 2 & -0.2487 Mean 96137 Mean 049285
velocity, the acceleration. It uses a 3-dimensional cartesian coordinate 43988 SrdDav 53631 SdDev 34263
= system and returns acceleration values for each of the axes illustrated 0 Missing 0 Missing 0
- in the figure below, gldoutle | class double |iclass " double
z 121 03528 96811 04010
f122] 0.2181 9.6088 042908
x 123 0.1385 9.7757 03091
\ 124 02182 9.8134 05227
I g \ 125 0.4547 9.8140 05817
: \ \ 126 08173 9.7384 0.4042
- Workspace i = ¥
= = = = y 1l = 127 0.5675 9.7634 0.1428
i Name i value iisize iiClass \
| | \ 128 0.3649 9.7310 07106
lerati.. 1200x3 rimet... 12 timetabl {
Gl Accelerati x 00x3 imetable \ re — 129 0.3341 96946 09632
*eqdeonic’ =8 {
Bﬁ ong, Sy e - oar / \ 130] 05479 97194 04161
: 1 atl b
[#] ax %1 Axes I matlab.graph... \ 131 0.7401 9.8389 0.2497
gcnmbmd‘.. 1200x1 double 1200x1 double Y oEies diard oasy
n 1200 1 double
) YoiLcan easily canhire the accelammatar data in MATLAR Mahile ysing 133 0.6422 9.6841 0.5320
@t 1200x1 double 1200x1 double
- Command Window
(& timestamp 1200x1 datet... 1200x1 ey 55 openExanple('natlabrobile/LoggingAcce Loranate rDatakxanpla’)
Hx 1200x1 double 1200x1 double >> LoggingAcceleroneterDatatxanple
Hy 1200x1 double 1200x1 dauble
B= 1200x1 double 1200x1 double

Fig. 8.9 MATLAB Mobile example

8.3 Tools for Parallel Computing in

Robotics
The key topics and concepts in parallel algebra [8] include:

Matrix Multiplication Parallelizing matrix operations often
uses the methods like block decomposition, to distribute parts
of the matrices across processors. The pseudocode is shown in
Algorithm 22.

Algorithm 22: Parallel matrix multiplication

Input: Matrix A € R”*", Matrix B € R"*”, Number of processors P
Output: Matrix C = AB € R"*/P

1 Partition matrix A row-wise into P blocks: A, A>, ..., Ap
2 Broadcast matrix B to all processors

3 foreach processori € {1,2, ..., P} in parallel do

4 Compute C; = A; - B

5 end

6 Gather all C; blocks to form the final matrix C

LU Decomposition Parallel algorithms for matrix
factorization methods in solving linear systems of equations.
The LU decomposition algorithm in parallel is shown in
Algorithm 23.

Algorithm 23: Parallel LU decomposition to solve linear
systems

Input: Matrix A € R"*", vector b € R”"
Output: Solution vector x

1 In parallel: Compute LU decomposition A = LU

2 In parallel: Solve the system Ly = b using forward substitution

3 fori =1tondo

P o = U7

5 end

6 In parallel: Solve the system Ux = y using backward substitution
7 fori =ntoldo

Ui
9 end
10 return x

Eigenvalue Computations The parallelizing computations of
eigenvalues and eigenvectors are computationally intensive for
large matrices. The pseudocode for QR iteration algorithm is
shown in Algorithm 24.

Algorithm 24: Parallel QR iteration to compute eigenvalues

Input: Matrix A € R"*", maximum iterations 7', tolerance €

Output: Approximate eigenvalues on the diagonal of A
1 fork=1toT do
// Step 1: Parallel QR Decomposition
2 In parallel: compute Ay | = Qr Ry
// Step 2: Parallel matrix multiplication
3 In parallel: compute Ay = Ry Qi
// Step 3: Check for convergence

4 if |A; — Ap_1]| < € then

5 | break

6 end

7 end

8 return Eigenvalues h;j =~ Ar(i,i) fori =1,....n

Data Distribution Efficiently distributing data (e.q.,
matrices, vectors) across multiple processors to minimize
communication overhead and maximize parallel efficiency.

Sparse Matrix Operations Specialize parallel algorithms to
handle sparse matrices, which have large dimensions but few
nonzero elements.

Parallel Solvers Iterative methods such as conjugate
gradient or generalized minimal residual (GMRES). A parallel
GMRES (Generalized Minimal Residual) method is an approach
for solving large linear systems by using a multicore CPU
cluster.

« BLAS (i.e., CUDA Basic Linear Algebra Subprograms)
supports operations like matrix-vector multiplication, matrix-
matrix multiplication, vector addition, scalar products, and
optimization [11, 21] for dense matrices.

« SOLVER provides high-performance solvers for linear
systems, eigenvalue problems, and singular value
decomposition (SVD) on GPUs.

« FFT (Fast Fourier Transform) offers routines for computing
1D, 2D, and 3D FFTs (Fast Fourier Transforms) on GPUs.

« GPU-accelerated RNG library

« DNN (i.e., deep neural network library) is applied to
frameworks like TensorFlow and PyTorch to accelerate
training and inference of neural networks.

« SPARSE (i.e., sparse matrix library) accommodates routines
for sparse matrix computations, optimized for the efficient
use of GPU memory and performance [11].

« Tensor is a library for efficient tensor algebra [7]
computations, primarily in deep learning, physics
simulations, and scientific computing.

8.4 Lab Session: Working with MATLAB
for ROS and GPU-Accelerated
Algorithms

At the end of this chapter, we would like to recommend all
readers complete the lab report. Please fill in the form shown
in Table 8.1 after each lab session (2 hours).

Table 8.1 Lab report for robotic vision

Name

Email

Lab date
Submitted date
Project title

Lab objectives

Configurations and
settings

Methods
Workflow
Datasets
Input

Output
Testing steps

Bugs or problems

Result analysis

Conclusion/reflection

References

<First Name Last Name>
<firstname.lastname@mailbox>

<dd-mm-yy>

<dd-mm-yy>

Supercomputing and mobile computing for robotics
The objective is to enhance the performance of

robotics by leveraging multicore processors and
GPUs

<The preferences, software, hardware, platforms,
tools, etc.>

<The relevant scientific theories or concepts >
<The step-by-step procedure for the experiment>
<The data and materials for your experiments>
<image filename, size, resolution >

<image filename, size, resolution>

<Functional & non-functional testing methods step
by step>

<The system error code, lines of the code>
<The tables, graphs, and figures, etc.>

<The strengths and weaknesses, or learned from this
project >

https://au.mathworks.com/help/matlabmobile/ug/
logging-
accelerometer-data.html

Appendix: <Source codes with comments and line numbers>
An example of this lab report is:

. Project title: Supercomputing and mobile computing for

robotics

- Project objectives: The objective of this project is to utilize
the parallel computing toolbox to enhance the performance
of robots by leveraging multicore processors, GPUs, and

computer clusters.

« Configurations and settings:

https://au.mathworks.com/help/matlabmobile/ug/logging-accelerometer-data.html
https://au.mathworks.com/help/matlabmobile/ug/logging-accelerometer-data.html

1. Install Python and necessary libraries (e.g., OpenCV,
NumPy, TensorFlow).

2. Install MATLAB and configure MATLAB Mobile for data
logging.

3. Set up Google Colab for GPU access.

« Methods: Performance can be improved by processing data
simultaneously. Machines can now comprehend and analyze
visual data.

- Implementation steps:

1. Use MATLAB Mobile to capture images with the mobile
device camera.

2. Save images in a predefined format (e.g., JPEG).

3. Use MATLAB Mobile to log accelerometer data.

4. Save data in .CSV format for further analysis.

5. Write a Python script by using OpenCV to process, and
analyze captured images.

6. Utilize GPU acceleration to enhance processing speed.

7. Employ MATLAB Parallel Computing Toolbox to run
multiple processes concurrently, improving efficiency.

. Testing steps:

1. Run GPU Code: Measure execution time to assess GPU
performance.

2. Benchmark GPU vs. CPU: Run the same code on the
CPU, and compare execution times.

3. Profile GPU Usage: Monitor GPU resource usage
during execution.

4. Test with Different Dataset Sizes: Evaluate the
system’s performance by using small, medium, and large
datasets.

5. Validate Output: Ensure GPU-based outputs match
expected results and refine code for efficiency.

« Result analysis: Parallel computing and GPU acceleration
significantly improved real-time data processing and matrix
operations; they enhance efficiency for robotic control.

- Conclusion/reflection: The integration of parallel
computing, GPU acceleration, and mobile data acquisition
proved effective for real-time robotics.

- Readings: https://au.mathworks.com/help/matlabmobile/
ug/logging-accelerome ter-data.html.

8.5 Exercises

Question 8.1. What are the differences between ROS 1 and
ROS 27

Question 8.2. What is multicore programming? How is it
related to CPUs and GPUs?

Question 8.3. Why mobile computing is closely related to
robotics?

Question 8.4. Why GPUs are important in modern
computing?

Question 8.5. How are programming languages taking
effects in supercomputing?

Question 8.6. What is the effective way to reduce the
complexity of matrix multiplications?

References

1. Alonso JD, Vidal ER, Rotter A, Muhlenberg M (2008) Lane-change decision aid
system based on motion-driven vehicle tracking. IEEE Trans Veh Technol

https://au.mathworks.com/help/matlabmobile/ug/logging-accelerometer-data.html

10.

11.

12.

13.
14.

15.

16.

57(5):2736-2746
[Crossref]

Chen CT, Chen YS (2009) Real-time approaching vehicle detection in blind-spot
area. In: International IEEE conference on intelligence transport system, vol. 1

Bermudez G, Pedro GDG, Medeiros VS, Boaventura T (2024) Comparative
analyses of ROS local planners for quadrupedal locomotion: a study in real and
simulated environments. In: Walking robots into real world. Springer Nature
Switzerland, pp 294-303

Cover T, Thomas J (1991) Elements of information theory. John Wiley & Sons,
London

Ertel W (2017) Introduction to artificial intelligence. Springer, Berlin
[Crossref]

Gao X, Liu Y, Nguyen M, Yan W (2024) VICL-CLIP: enhancing face mask
detection in context with multimodal foundation models. In: ICONIP

Itskov M (2011) Tensor algebra and tensor analysis for engineers, 4th edn.
Springer. Berlin

Jacobson N (2009) Abstract algebra, 2nd edn. Dover Publications, New York

Jia X, Hu Z, Guan H (2011) A new multi-sensor platform for adaptive driving
assistance system (ADAS). In: World congress on intelligent control and
automation, p 1224

Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and
prospects. Science 349(6245):255-260
[MathSciNet][Crossref]

Ko YH, Kim KJ, Jun CH (2005) A new loss function-based method for
multiresponse optimization. J Quality Technol 37(1):50-59
[Crossref]

Koch M (2018) Artificial intelligence is becoming natural. Cell 173(3):531-533
[Crossref]

Kontschieder P et al (2015) Deep neural decision forests. In: ICCV

Kriegeskorte N (2015) Deep neural networks: a new framework for modelling
biological vision and brain information processing. Annu Rev Vision Sci
1(1):417-446

[Crossref]

Lalonde M, Byrns D, Gagnon L, Teasdale N, Laurendeau D (2007) Real-time eye
blink detection with GPU-based SIFT tracking. In: Canadian conference on
computer and robot vision, pp 481-487

Littman M (2015) Reinforcement learning improves behavior from evaluative
feedback. Nature 521:445-451

https://doi.org/10.1109/TVT.2008.917220
https://doi.org/10.1007/978-3-319-58487-4
http://www.ams.org/mathscinet-getitem?mr=3382217
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1080/00224065.2005.11980300
https://doi.org/10.1016/j.cell.2018.04.007
https://doi.org/10.1146/annurev-vision-082114-035447

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

[Crossref]

LuH, LiY, Chen M, Kim H, Serikawa S (2018) Brain intelligence: go beyond
artificial intelligence. Mobile Netw Appl 23(2):368-375
[Crossref]

Manning C, Raghavan P, Schutze H (2008) Introduction to information retrieval.
Cambridge University Press, Cambridge
[Crossref]

Peng D (2025) Vision perception optimization and adaptive control for resource-
constrained platform: a Ping-Pong ball pickup & place system. Master’s thesis,
Auckland University of Technology, New Zealand

Petrushin VA (2005) Mining rare and frequent events in multi-camera
surveillance video using self-organizing maps. In: ACM international conference
on knowledge discovery in data mining, pp 794-800

Rao S (2009) Engineering optimization: theory and practice, 4th edn. ISBN:
978-0-470-18352-6

Stoer J, Bulirsch R (1991) Introduction to numerical analysis, 2nd edition.
Springer, Berlin

Yan WQ (2019) Introduction to intelligent surveillance: surveillance data
capture, transmission, and analytics, 3rd edn. Springer, Berlin
[Crossref]

Yan WQ (2023) Computational methods for deep learning: theory, algorithms,
and implementations, 2nd edn. Springer, Berlin
[Crossref]

Ye Y, Nie Z, Liu X, Xie F, Li Z, Li P (2023) ROS2 real-time performance
optimization and evaluation. Chinese J Mech Eng 36(1):144
[Crossref]

Zhao H, Xu S, Yan W, Xu D (2025) Design and optimization of target detection
and 3D localization models for intelligent muskmelon pollination robots.
Horticulturae 11(8):905

[Crossref]

https://doi.org/10.1038/nature14540
https://doi.org/10.1007/s11036-017-0932-8
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1007/978-3-030-10713-0
https://doi.org/10.1007/978-981-99-4823-9
https://doi.org/10.1186/s10033-023-00976-5
https://doi.org/10.3390/horticulturae11080905

Names in This Book
Reverend Thomas Bayes (1701-1761)
Andrew Barto (1948/1949-)

John F. Canny (1958-)

Richard Ernest Bellman (1920-1984)
Yoshua Bengio (1964-)

Sergei Natanovich Bernstein (1880-1968)
Pierre Bézier (1910-1999)

Valentino Braitenberg (1926-2011)
Paul de Casteljau (1930-2022)
Maurice Fréchet (1878-1973)

Carl Friedrich Gauss (1777-1855)
David Hilbert (1862-1943)

Geoffrey Hinton (1947 -)

John Hopfield (1933 -)

Rudolf Emil Kalman (1930-2016)
Carl Gustav Jacob Jacobi (1804-1851)
Reinhard Klette (1950-2020)

Johann Heinrich Lambert (1728-1777)
Yann Andre LeCun (1960-)

David Courtenay Marr (1945-1980)
August Ferdinand Mobius (1960-)
John Carlyle Raven (1902-1970)

Irwin Sobel (1940-)

Isaac Jacob Schoenberg (1880-1968)
Richard Sutton (1957/1958-)

Alan Turing (1912-1954)

Georgy Feodosevich Voronyi (1868-1908)

David Wechsler (1896-1981)

Key Points of This Book

This book symmetrically delivers the content of robotic
vision associated with deep learning and robotic
intelligence, in the core area of contemporary Al
knowledge. The research scientists and computer
engineers will benefit from this book.

This book exactly matches with the postgraduate
students’ needs in universities. The book provides the first-
hand experience of higher education teaching with the
content selected from the student’s reactions in the classes.
The PG students will benefit from the textbook without
difficulties.

The peer colleagues and teachers in universities and
research institutions will benefit from the textbook, and
they will find the suitable teaching materials and
pedagogies in the knowledge delivery and example lab
reports of lab sessions from this book.

Glossary

3D reconstruction In computer vision, the creation of
three-dimensional models from a set of digital images
Activation function In artificial neural networks, the
activation function of a node defines the output of that node
given an input or a set of inputs.

Camera resectioning In camera calibration, the process
of estimating the parameters of a pinhole camera model
approximating the camera that produced a given
photograph or video

Camera retreat Camera retreat is a phenomenon that
occurs in visual servoing when a camera moves away from
a target and then returns. It can cause problems with visual
servoing control tasks, such as those involving multi-joint
manipulators.

Dead reckoning In navigation, dead reckoning is the
process of calculating the current position of a moving
object by using a previously determined position, or fix, and
incorporating estimates of speed, heading (or direction or
course), and elapsed time.

Depth perception 1t is the ability to perceive distance to
visual objects in the world by using the visual system and
visual perception.

Distillation In machine learning, distillation is the process
of transferring knowledge from a large model to a smaller
one.

Emotional quotient It is the ability to perceive, use,
understand, manage, and handle emotions.

Federated learning is a subfield of machine learning with
multiple entities collaboratively to train a model while
ensuring that the data remains decentralized.

Forward kinematics The use of kinematic equations of a
robot to compute the position of end-effector from specified
values for joint parameters

Image skeletonization A skeleton (or medial axis)
representation of a shape or binary image, computed by
means of morphological operators

Imitation learning A paradigm in reinforcement learning,
where an agent learns to perform a task by supervised
learning from expert demonstrations

Intelligence quotient A total score derived from a set of
standardized tests or subtests designed to assess human
intelligence

Inverse reinforcement learning is to learn the
underlying reward function that the expert seems to be
maximizing.

Inverse kinematics The mathematical process of
calculating variable joint parameters needed to place the
end of a kinematic chain

Mobile computing In human-computer interaction, a
computer is expected to be transported during normal
usage and allow for transmission of data, which can include
voice and video transmissions.

Path planning A computational problem to find a
sequence of valid configurations that moves the object from
source to destination

Reinforcement learning An interdisciplinary area of
machine learning and optimal control concerned with how
an intelligent agent should take actions in a dynamic
environment in order to maximize a reward signal

Robotic control The system contributes to movement of
robots.

Robot end-effector The device at the end of a robotic
arm, designed to interact with the environment

Robot operating systems ROS is an open-source robotics
middleware suite.

Robot manipulator A device used to manipulate materials
without direct physical contact by the operator

Robotic olfaction The automated simulation of the sense
of smell

Spline curve In mathematics, a spline is a function
defined piecewise by polynomials.

Stereo imaging A technique for creating or enhancing the
illusion of depth in an image by means of stereopsis for
binocular vision

Third-eye method Third-eye method maps a reference
image of a pair of stereo camera into the pose of a third
camera, measuring the similarity between created virtual
image and the actually recorded third image.
Triangulation In trigonometry and geometry,
triangulation is the process of determining the location of a
point by forming triangles to the point from known points.
Turing test A test of a machine’s ability to exhibit
intelligent behavior equivalent to, or indistinguishable
from, that of a human

Visual servoing A method that makes use of feedback
information extracted from a vision sensor to control the
motion of a robot

Index

A

Acceleration 58, 153
Accelerometers 120, 154
Actions 7, 126

Activation function 104
Actuator force 49

Actuators 30, 49, 52

Adder 150

Addition 149

Affine transformation 14, 140
Agents 4, 93
Agent-to-Agent (A2A) 5
AlexNet 21

Allele 122

AlphaGo 125

Alternating current 52
Altitude 153

Amorphous computing 121
Anaglyphs 86

Anchor box 106

Anchor box offset 106
Androids 30

Angular rate 120

Angular velocity 49, 57, 153
Animations 95

Arithmetic operations 103, 148
Arm-type robots 27, 53
Artificial immune systems 121
Artificial neural networks 6
Aspect ratio 83, 85
Assembly 4

Attitude 48, 120
Augmentation 102

Augmented reality 95
Autocomplete 154

Autoencoder 5

Automata 31, 32

Automatic differentiation 21
Automatic vehicle navigation 143
Autonomous systems 1
Autonomy 53

Average pooling 104, 105
Azimuth 153

B

Backbone 106
Backward chaining 120
Base distance 85

Base learners 131
Baseline distance 86
Base models 131

Batch normalization 104
Bayes’ law 18

Bayes’ rule 18, 120
Bayes’ theorem 18, 121
Bearing angle 153
Behavioral cloning 128
Behavioral robot 32
Behavior planner 143
Behavior planning 148
Bernstein basis 13
Bernstein form 10
Bézier curves 10, 13
Bidirectional encoder representations (BERT) 108
Bilinear interpolation 73
Binary color 66

Binary cross entropy 106
Bio-inspired computing 121
BLAS 156

Blob 1,4, 71, 137

Blob detection 71

Block decomposition 155
Block distance 37

Boston dynamics 9

Boundary conditions 58
Bounding box 75, 105
Brain-inspired algorithms 121
Bundle adjustments 68

C

Camera baseline 86

Camera calibration 1, 65, 67, 78, 85, 139
Camera geometry 86

Camera matrix 67

Camera origin 141

Camera pair 95

Camera panning 2

Camera parameters 78
Camera retreat 137, 140
Camera tilting 2

Camera zooming 2

Canny edge detector 70
CapsNets 21

CAPTCHA 123

Cartesian coordinate system 55
Cartesian coordinates 53
Cartesian pose 138

Car valet 148

Cascading diffusion model 110
CCD camera 83

Cell 107

Cellular automata 121

Central projection 84

Chain 48

Chain rule 6

Chain-of-thought (CoT) 93, 101, 109
Chatbots 5, 93, 101

ChatGPT 21, 54, 93, 101, 102
ChatGPT-4 123

Chessboard 67

Chromosome 122

Circle 139

Circle detection 76
Classification score 106
Clipping window 140

Closing 72

Cloud computing 147

Cluster computing 152
Cold-start data 109
Collaborative learning 129
CompfyUI 5

Compliance 54

Computational cost 34
Computing power 4, 10
Conditional probability 18
Confusion matrix 110

Conic curves 16

Contour 1

Contrastive language-image pre-training (CLIP) 111
Control law 141

Control node 143

Control points 10, 13
Conventional neural networks (CNNs) 21, 103
Convex hull 11

ConvNets 21, 103

Convolution 103

Convolution kernel 70
Convolution operations 69, 103
Convolutional layers 104
Copilot 101, 102

Corner 75,137, 139

Corner extraction 68

Cost function 105

Cost map 35

Course 153

Crossover 122

CUDA GPUs 103
Cumulative reward 125, 126
Current flows 52

Curvature 17

D

DA converter 2

D* algorithm 34

DALL - E 21

DALL-E 2 111

Darwin’s theory of evolution 121
Data access rights 130

Data distribution service 147
Data minimization 130

Data privacy 130

Data quality 129

DC motors 52

De Casteljau’s algorithm 10
Decay function 105

Decision forest 121

Decision making 120

Decision networks 121

Decision tree 121

Deep deterministic policy gradient 133
Deep feedforward network (DFN) 8
Deep learning 1, 101

Deep learning playground 7
Deep nets 103

Deep neural network (DNN) 156
Deep Q-learning 119

Deep scene understanding 102

DeepSeek 101

DeepSeek Coder 108
DeepSeek-LLM 108
DeepSeek-V3 108

Degrees of freedom (DoF) 54
Demonstrations 128
Denoising diffusion probabilistic models (DDPMs) 111
Dense matrices 156

Dense stereo 86

Depth cameras 138

Depth estimation 95, 97
Depth perception 5
Derivatives 13

Device control 147

Diffusion models 5

Diffusion transformer (DiT) 21, 111
Dify 5

Dilated image 72

Dilation 72

Direct current 52

Disparity 86

Disparity map 95

Distillation 110

Distortion effects 78
Distortion parameters 67
Distributed learning 130, 151
Downsampling 103

Driving maneuver 143

Drone 53

Dynamic Bayesian networks 121
Dynamic environment 125
Dynamic range 84

E
Edge 1, 4, 137
Edge detector 70

Eigenvalue computations 155
Eigenvalues 17

Eigenvectors 17

Electrical components 52
Electric motors 52

Electronic compass 43
Electronic motors 54

Electronic Numerical Integrator and Computer (ENIAC) 6
End-effector 27, 52, 54, 137
End-to-end 102

End-to-end methods 103
Ensemble learning 131, 151
Entropy 18

Epipolar constraint 86

Epipolar geometry 85

Epipolar line 86

Epipolar plane 86

Epoch 105

Eroded image 72

Erosion 72

Euclidean distance 37

Evidence 121

Evolutionary algorithms 121, 122
Evolutionary computation 121
EXIF data 2

Expert system 121

Exploding gradient problem 107
Explored and exploded (EE) 49
Exponential function 105
Extrinsic parameters 67, 68, 85, 137
Eye-in-hand 137

Eye-to-hand 137

F

Face detection 5
Facial emotion recognition 55

Fast Fourier transform (FFT) 156
Feature map 103, 104

Federated learning 129, 151

Field of view (FOV) 67, 101, 138, 141
Filters 70

Finite State Machine (FSM) 32
First-order logic 120

Fitness 122

Fitness function 122

Flattened 110

Flying robot control 129

Flying robots 53

Focal length 67, 85

Force 120

Forget gate 107

Forward chaining 120

Forward kinematics 49, 138

FPGA 103

Fréchet inception distance 111, 112
Full autonomy 53

Full scale IQ 123

Full self driving 2

Fully connected layers 103, 104, 108
Functional analysis 37

Function approximator 126

Fuzzy logic 120

G

Game theory 121

Gantry 53

Gated recurrent units (GRU) 8

Gaussian diffusion 111

Gaussian filter 70

Gemini 93, 101

Generalization 129

Generalized minimal residual (GMRES) 156

Generation 102

Generative Adversarial Networks (GANs) 5, 21
Generative pre-trained transformer 102, 108
Genetic algorithm (GA) 53, 119, 122
Geodesic 18

Gflops 111

Global matching 88

Global Positioning System (GPS) 120

Goal check 148

Google Brain 108

Google Colab 151

Google Colaboratory 151

GoogLeNet 21

Google street view 142

GPS signals 43

GPU acceleration 158

GPU computing 103

Graphics memory control 151

Graphics Processing Unit (GPUs) 4, 8, 103, 147, 151
Grasping 95

Grayscale color 66

Grid cell 33

Gripper 59

Ground truth 6, 106

Gynoid 53

Gyroscopes 120

H

Hallucination 5

Hardware abstraction 147

Head 106

Heuristic search 120

Hidden layers 8

Hierarchical structure 103

High performance computing 148
Holistic plan 34

Holistic scene 5, 119

Holonomic constraints 33

Holonomic way 33

Homogeneous transformation 15

Hough transform 75

Human and machine interactions (HMI) 5
Human and robot interactions (HRI) 19, 52, 93
Human expression of emotions 55
Human intelligence 122

Human interaction 53

Human vision system (HVS) 9

Hydraulics 54

Hyperspectral images 78

I

I-divergence 19
[llumination 69
Image-based visual servo 138
Image binarization 71
Image center 67

Image closing 78

Image denoising 110
Image dilation 78

Image distortion 68
Image erosion 78

Image formation 65, 66
Image generation 110
Image inpainting 110
Image morphology 72
ImageNet 21

Image opening 78
Image outpainting 110
Image processing 65, 69, 140, 151
Image rotation 75

Image scaling 75

Image skeletonisation 73

Image translation 75

Image warping 73

Imitation learning 53, 119, 127
Inception score 113

Indexing 102

Inertial Measurement Unit (IMU) 120
Inertial Navigation Systems (INS) 120
Information entropy 18

Information fusion 120

Information security 148

Informed search 120

Infrared rays 65, 84

Inner product 150

Input gate 107

Input layer 8, 104

Inspection 4

Intelligence quotient 122

Interest point 75

Intersection over Union (IoU) 75, 106
Intrinsic parameters 67, 85, 137
Inverse kinematics 49, 138

Inverse reinforcement learning 119, 128
Invisible layers 8, 104

Inward neighbor 48

Iterative dichotomiser 3 (ID3) 21

J

Jacobian matrix 49, 53

Joint 48

Joint angle 48

Joint chain 139

Joint controller 139

Joint forces 53

Joint probability 18

Joint rotation-translation matrix 68
Joint torques 53

K

Kalman filtering 44
Kinematic chains 48
Kinematic model 41
Kinematics 54
Kinetics 27

KL divergence 19
Knot 18

Knowledge base 102

L

Labeled data 103

Lambert’s cosine law 91

Landmarks 42

Large Language Models (LLMs) 5, 7, 101, 102, 151
Latent layers 104

Latent variable generative models 110
Latitude 153

Leaky ReLU 104

Leaky ReLU function 104

Learning rate 105

Length 48

Light Detection and Ranging (LiDAR) 4, 119, 138
Likelihood 121

Line 139

Linear algebra 14

Linear velocity 49, 57, 120

Line detection 76

Link offset 48

Links 48

Local matching 88

Location estimation 42

Locus 57

Logistic function 108

Longitude 153

Long short-term memory (LSTM) 7, 8, 21, 107

Loss function 105, 106
Low-rank adaptation (LoRA) 109
LU decomposition 155

M

Machine intelligence 53, 119
Machine translation 8

Magnetic field 153
Magnetometers 120

Make decision 4

Manhattan distance 37
Man-in-the-middle 148
Manipulation 52, 95
Manipulator 13, 27

Mask R-CNN 21

Matching matrix 110

MATLAB 10

MATLAB Online 77

Matrix factorization 155
Matrix-matrix multiplication 156
Matrix multiplication 150
Matrix-vector multiplication 156
Maximum cumulative reward 127
Max pooling 104, 105

Mean squared error (MSE) 105, 106
Mechanical construction 52
MediaPipe 31, 55

Membrane computing 121
Message passing 147
Middleware 10, 147

Mining 120

Mixture of experts (MoE) 131
Mobile camera 1

Mobile computing 147

Mobile robots 27, 53

Mobius strip 90

Model context protocol (MCP) 5
Model predictive controller 129
Moment 75

Monadic operations 69

Motif 1, 137

Multi-core computing 147
Multicore programming 9
Multilayer perceptron (MLP) 6, 21
Multiplication 149
Multiprocessing 150
Multispectral images 78
Multi-stage training 109
Multi-thread computing 9, 147
Multithreading 149

Mutation 122

Mutual entropy 18

N

Natural language processing (NLP) 8
Nautical mile 18

Navigation 4, 142

Neck 106

Neighboring links 48

Neural computation 121

Neural Processing Unit (NPU) 10
Neurons 6

Newton’s laws 121

Newton’s second law 49

Noise 69

Non-maximum suppression (NMS) 107
Nonuniform rational B-spline curves (NURBS) 13
Normal vector 91

Normalized cross-correlation (NCC) 89

0
Object detection and recognition 2, 6, 9, 19, 65, 71

Object segmentation 6
Objectness score 106
Object tracking 2
Observations 126
Obstacle avoidance 65, 120
Occupancy grid 33, 35
Occupancy map 133
Ollama 5

Ollama model 102

OpenAl Sora 6

OpenCV 76

Opening 72

Open WebUI 5

Optimal behavior 126
Optimal policy 126, 127
Optimization problems 122
Orientation 48, 57, 153
Orthogonal matrices 15
Output gate 107

Output layer 8, 104
Outward neighboring link 48
Overfitting 105

P

Package management 147
Pan 84

Parabola 12

Parallel algorithms 156
Parallel alignment 95
Parallel computing 4, 9, 103, 151
Parallelism 148

Parallel manipulators 49
Parallel optic axes 84
Parallel optical axes 86
Parallel solvers 156
Parking operations 143

Patchify 112

Path 47, 57

Path aggregation network (PAN) 106
Path analyzer 143

Path planner 148

Path planning 120, 143

Path smoother 148

Payload 31, 53

Pedestrians 95

Performance IQ 123
Perspective transformation 15
Physics simulations 156
Pick-and-place robot 4, 47, 95
Piece-wise curve 58

Pitch 54, 153

Planning 95, 120

Point cloud 120

Point correspondences 68
Point ordering 68
Polynomials 17, 58

Pooling 103

Pooling operation 103, 105
Pose 57

Pose-based visual servo 138
Pose estimation 138

Position 153

Posterior 121

Preceding link 53

Predicative logic 120
Pre-trained models 103
Principal point 67

Prior 121

Prismatic joint 48
Probabilistic reasoning 120
Probabilistic roadmap (PRM) 38
Probability distribution 19

Programmable gradient information (PGI) 107
Prompt 5

Proportional control law 141

Proportional controller 28

Propositional logic 120

Pruning 110

PTZ camera 2, 84

Q

QR iteration 155
Quadratic curves 17
Quantization 110
Qwen 101

R

Radial distortion 85
Rapid-exploring random tree (RRT) 40
Rational Bézier curve 13

Raven’s progressive matrices 122
RBM 21

R-CNN 21

Reaction force 53

Real color 66

Reasoning 120

Receptive field 104

Rectangle 139

Rectified linear unit 103
Recurrent neural architectures (RNNs) 7, 8, 107
Recursive method 10

Reflection 69

Regions of interest 137
Reinforcement learning 7, 53, 108
Relative entropy 19

ReLU function 104

ResNet 21

Retrieval 102, 120

Retrieval-Augmented Generation (RAG) 5, 102
Revolute joint 48

Reward 7, 126

Riemannian manifold 18

Rigid body 48

RMS 21

Robot arm 137

Robot control 137

Robot dynamics 52

Robotic control 1, 27, 53
Robotic dynamics 27

Robotic intelligence 124

Robotic kinematics 48

Robotic mapping 54

Robotic navigation 54, 65
Robotic vision 147

Robot manipulator 137

Robot operating system 143, 147
Robot operating system (ROS) 5, 9, 10, 31, 52
Robot tracking systems 120

Roll 54, 153

ROS 2 147

Rotation 140

Rotational joint 48

Rotation matrix 67
Rotation-translation matrix 67

S

Scalability 110, 129
Scalar products 156
Scaling 140

Scaling factors 85
Scene understanding 4
Search 120

Search range 86
Sectioning 42

Self-attention 108

Semi-global matching 88

Sensor fusion 5

Sensors 52

Sequential computing 148
Sequential decision 121

Serial computing 148

Serial-link manipulator 48, 49, 53
Serial manipulators 49

Shadow 69

Shallow nets 103

Shape 1, 120

Shared weights 104

Shortest path 18, 33

Silhouette 1, 4, 71

Silhouette image 71

Simulated annealing 121
Simultaneous localization and mapping (SLAM) 93
Single program multiple data (SPMD) 151
Singular value decomposition 156
Singularity 49

Skeleton 4, 36

SLAM algorithm 27

Sliding joint 48

Slope 16

Sobel kernel 70

Softmax function 103, 105
Softmax layer 108

SPARSE 156

Sparse matrix computations 156
Sparse matrix operations 156
Sparse stereo 86

Spatial operations 69

Spatial pyramid pooling (SPP) 106
Spherical cameras 142

Spherical coordinates 141

Spherical coordinate system 141
Standard deviation 70
State-action pairs 128

State estimator 126
State-of-the-art (SOTA) 101, 103
States 7

State vector 45

Statistical distance 19

Stereo camera 83

Stereo matcher 88

Stereo pair 86

Stereopsis 3

Stereo video 95

Stereo vision 3, 5, 83, 86
Structure-from-motion 5

Student model 110

Subtraction 149

Sum of absolute differences 71
Sum of squared differences 71
Supercomputing 8

Supervised fine-tuning operations (SFT) 109
Supervisory 52

Support Vector Machine (SVM) 7
Surveying 42

Swarm intelligence 121

Swarm intelligence-based algorithms 121

T

Taxicab distance 37
Teacher model 110
Teleoperation 52
Template matching 71
Template size 86
Temporal derivative 57
Tensor 156

Tensor algebra 156

TensorFlow 7

Tensor processing unit 10
Termination condition 105
Tetrahedron 90

Texture 4, 120

Third-eye method 88

3D cameras 138

3D prismatic 53

3D reconstruction 53, 83
Tilt 84

Torques 13, 49, 53

Torso 30

Traffic collision analysis 120
Transfer function 104
Transfer learning 7, 103, 151
Transformer 7, 108
Translation 56, 140
Translational joint 48
Translation matrix 67
Tree-of-thought (ToT) 102
Trial-and-error 126
Triangulation 42

Turing test 119, 123
Twist 48

2D manipulator 50

U
Ultraviolet (UV) 84, 119
Uninformed search 120

V

Vanishing gradient problem 107
Vector addition 156

Vector computation 148

Vector computers 148

Vehicle lane keeping 129

Vehicles 95

Velocity 58

Velocity profiler 148

Verbal IQ 123

VGG 21

Viewing frustum 140
Visible layer 104
Vision-based navigation 142
Vision sensors 137

Vision transformer (ViT), 101, 102110
Visual distance 95

Visual features 141

Visual field 104

Visual object recognition 4
Visual odometry 42

Visual servo controller 142
Visual servoing 31, 53, 137
Voronoi diagram 36
Voronoi roadmap 36

W

WAIS 5 123

WAIS-IT 123

Weak learners 131

Wheeled robots 27

Wireless communication 152
Work envelope 4, 48, 54

Y

Yaw 54

YOLOvV3 106

YOLOv4 106

YOLOvV9 107

You Only Look Once (YOLO) 21, 105

Z

Zero mean 45

Zoom 84

	Advances in Computer Vision and Pattern Recognition
	Robotic Vision
	Preface
	About the Author
	Contents
	1. Introduction to Robotic Vision
	1.1 Overview of Robotic Vision
	1.2 Importance and Applications of Robotic Vision
	1.3 Key Challenges in Robotic Vision
	1.4 Foundational in Machine Learning and Deep Learning
	1.5 Mathematics Background
	1.6 Prerequisite Mathematics for Robotic Vision
	1.6.1 Linear Algebra
	1.6.2 Geometry
	1.6.3 Probability

	1.7 Structure of the Book
	1.8 Lab Session: Introduction to Tools and Platforms
	1.9 Exercises
	Appendix: History of Computing

	2. Robotics
	2.1 Mobile Vehicles
	2.2 Humanoid Robots
	2.3 Navigation
	2.3.1 Automata
	2.3.2 D* Algorithm
	2.3.3 Voronoi Diagram
	2.3.4 PRM: Probability-Based Method
	2.3.5 RRT: Rapid-Exploring Random Tree
	2.3.6 Dead Reckoning

	2.4 Mathematics Background
	2.5 Robot Arm Kinematics
	2.6 Dynamics and Control
	2.7 Applications of Robotics
	2.8 Lab Session: Mobile Arm with MATLAB
	2.9 Exercises

	3. Image Processing for Robotics
	3.1 Fundamentals of Image Formation
	3.2 Camera Calibration
	3.3 Essentials of Image Processing
	3.4 Image Morphology
	3.5 Feature Extraction for Object Detection and Recognition
	3.6 Image Processing with MATLAB
	3.7 Lab Session: Implmenting Camera Calibration with MATLAB
	3.8 Exercises

	4. Stereo Vision and 3D Reconstruction
	4.1 Stereo Camera and Stereo Vision
	4.2 3D Reconstruction
	4.3 Applications of Stereo Vision
	4.3.1 Applications of Robot Navigation
	4.3.2 Applications in Deep Scene Understanding
	4.3.3 Applications in Visual Object Recognition

	4.4 Lab Session: Implementing Stereo Vision Systems with MATLAB
	4.5 Exercises

	5. Deep Learning for Robotic Vision
	5.1 Overview of Deep Learning Architectures for Vision
	5.2 Convolutional Neural Networks (CNNs) and YOLO Models
	5.2.1 CNN Models
	5.2.2 YOLO Models

	5.3 RNNs, Transformers, and Multimodal Approaches
	5.3.1 RNNs
	5.3.2 Vision Transformers
	5.3.3 Diffusion Transformers

	5.4 Lab Session: Training a Vision Model with MATLAB
	5.5 Exercises

	6. Robotic Perception and Intelligence
	6.1 Perception
	6.2 Robotic Intelligence
	6.3 Reinforcement Learning for Visual Control
	6.4 Imitation Learning and Inverse Reinforcement Learning
	6.5 Federated Learning and Distributed Models
	6.6 Lab Session: Implementing Perception Algorithms with MATLAB
	6.7 Exercises

	7. Vision-Based Robotic Control
	7.1 Basics of Visual Servoing
	7.2 Advanced Visual Servoing
	7.3 Vision-Based Navigation and Path Planning Algorithms
	7.4 Lab Session: Visual Servoing with MATLAB
	7.5 Exercises

	8. Computational Tools for Robotic Vision
	8.1 Robot Operating System (ROS)
	8.2 Modern Computing for Robotics
	8.2.1 Supercomputing
	8.2.2 GPU Acceleration
	8.2.3 Mobile Computing for Robotics

	8.3 Tools for Parallel Computing in Robotics
	8.4 Lab Session: Working with MATLAB for ROS and GPU-Accelerated Algorithms
	8.5 Exercises

	Names in This Book
	Key Points of This Book
	Glossary
	Index

